|
| 1 | +""" |
| 2 | +1D TEBD using MPSCircuit |
| 3 | +""" |
| 4 | + |
| 5 | +import time |
| 6 | +import numpy as np |
| 7 | +import scipy |
| 8 | +import tensorcircuit as tc |
| 9 | + |
| 10 | +K = tc.set_backend("jax") |
| 11 | +tc.set_dtype("complex128") |
| 12 | + |
| 13 | + |
| 14 | +def heisenberg_time_evolution_mps( |
| 15 | + nqubits: int, |
| 16 | + total_time: float, |
| 17 | + dt: float, |
| 18 | + hxx: float = 1.0, |
| 19 | + hyy: float = 1.0, |
| 20 | + hzz: float = 1.0, |
| 21 | + hz: float = 0.0, |
| 22 | + hx: float = 0.0, |
| 23 | + hy: float = 0.0, |
| 24 | + initial_state=None, |
| 25 | + split_rules=None, |
| 26 | +): |
| 27 | + # Initialize MPS circuit |
| 28 | + if initial_state is not None: |
| 29 | + mps = tc.MPSCircuit(nqubits, wavefunction=initial_state, split=split_rules) |
| 30 | + else: |
| 31 | + mps = tc.MPSCircuit(nqubits, split=split_rules) |
| 32 | + tensors = mps._mps.tensors |
| 33 | + |
| 34 | + # Number of Trotter steps |
| 35 | + nsteps = int(total_time / dt) |
| 36 | + dt_step = dt |
| 37 | + |
| 38 | + @K.jit |
| 39 | + def apply_trotter_step(mps_tensors): |
| 40 | + mps_circuit = tc.MPSCircuit(nqubits, tensors=mps_tensors, split=split_rules) |
| 41 | + # Apply odd bonds (1-2, 3-4, ...) |
| 42 | + |
| 43 | + for i in range(0, nqubits, 2): |
| 44 | + mps_circuit.rxx(i, (i + 1) % nqubits, theta=hxx * dt_step) |
| 45 | + mps_circuit.ryy(i, (i + 1) % nqubits, theta=hyy * dt_step) |
| 46 | + mps_circuit.rzz(i, (i + 1) % nqubits, theta=hzz * dt_step) |
| 47 | + |
| 48 | + # Apply even bonds (2-3, 4-5, ...) |
| 49 | + for i in range(1, nqubits, 2): |
| 50 | + mps_circuit.rxx(i, (i + 1) % nqubits, theta=2 * hxx * dt_step) |
| 51 | + mps_circuit.ryy(i, (i + 1) % nqubits, theta=2 * hyy * dt_step) |
| 52 | + mps_circuit.rzz(i, (i + 1) % nqubits, theta=2 * hzz * dt_step) |
| 53 | + |
| 54 | + # mps_circuit.unitary(i, unitary=unitary) |
| 55 | + |
| 56 | + for i in range(0, nqubits, 2): |
| 57 | + mps_circuit.rxx(i, (i + 1) % nqubits, theta=hxx * dt_step) |
| 58 | + mps_circuit.ryy(i, (i + 1) % nqubits, theta=hyy * dt_step) |
| 59 | + mps_circuit.rzz(i, (i + 1) % nqubits, theta=hzz * dt_step) |
| 60 | + |
| 61 | + for i in range(nqubits): |
| 62 | + mps_circuit.rx(i, theta=2 * hx * dt_step) |
| 63 | + mps_circuit.ry(i, theta=2 * hy * dt_step) |
| 64 | + mps_circuit.rz(i, theta=2 * hz * dt_step) |
| 65 | + |
| 66 | + return mps_circuit._mps.tensors |
| 67 | + |
| 68 | + # Perform time evolution |
| 69 | + for step in range(nsteps): |
| 70 | + tensors = apply_trotter_step(tensors) |
| 71 | + |
| 72 | + return tc.MPSCircuit(nqubits, tensors=tensors, split=split_rules) |
| 73 | + |
| 74 | + |
| 75 | +def compare_baseline(): |
| 76 | + # Parameters |
| 77 | + nqubits = 10 |
| 78 | + total_time = 1 |
| 79 | + dt = 0.01 |
| 80 | + |
| 81 | + # Heisenberg parameters |
| 82 | + hxx = 0.9 |
| 83 | + hyy = 1.0 |
| 84 | + hzz = 0.3 |
| 85 | + hz = -0.1 |
| 86 | + hy = 0.16 |
| 87 | + hx = 0.43 |
| 88 | + |
| 89 | + split_rules = {"max_singular_values": 32} |
| 90 | + |
| 91 | + c = tc.Circuit(nqubits) |
| 92 | + c.x(nqubits // 2) |
| 93 | + initial_state = c.state() |
| 94 | + |
| 95 | + # TEBD evolution |
| 96 | + final_mps = heisenberg_time_evolution_mps( |
| 97 | + nqubits=nqubits, |
| 98 | + total_time=total_time, |
| 99 | + dt=dt, |
| 100 | + hxx=hxx, |
| 101 | + hyy=hyy, |
| 102 | + hzz=hzz, |
| 103 | + hz=hz, |
| 104 | + hx=hx, |
| 105 | + hy=hy, |
| 106 | + initial_state=initial_state, |
| 107 | + split_rules=split_rules, |
| 108 | + ) |
| 109 | + |
| 110 | + # Exact evolution |
| 111 | + g = tc.templates.graphs.Line1D(nqubits, pbc=True) |
| 112 | + H = tc.quantum.heisenberg_hamiltonian( |
| 113 | + g, hxx=hxx, hyy=hyy, hzz=hzz, hz=hz, hy=hy, hx=hx, sparse=False |
| 114 | + ) |
| 115 | + U = scipy.linalg.expm(-1j * total_time * H) |
| 116 | + exact_final = K.reshape(U @ K.reshape(initial_state, [-1, 1]), [-1]) |
| 117 | + |
| 118 | + # Compare results |
| 119 | + mps_state = final_mps.wavefunction() |
| 120 | + fidelity = np.abs(np.vdot(exact_final, mps_state)) ** 2 |
| 121 | + print(f"Fidelity between TEBD and exact evolution: {fidelity}") |
| 122 | + c_exact = tc.Circuit(nqubits, inputs=exact_final) |
| 123 | + # Measure observables |
| 124 | + z_magnetization_mps = [] |
| 125 | + z_magnetization_exact = [] |
| 126 | + for i in range(nqubits): |
| 127 | + mag_mps = final_mps.expectation((tc.gates.z(), [i])) |
| 128 | + z_magnetization_mps.append(mag_mps) |
| 129 | + |
| 130 | + mag_exact = c_exact.expectation((tc.gates.z(), [i])) |
| 131 | + z_magnetization_exact.append(mag_exact) |
| 132 | + |
| 133 | + print("MPS Z magnetization:", K.stack(z_magnetization_mps)) |
| 134 | + print("Exact Z magnetization:", K.stack(z_magnetization_exact)) |
| 135 | + print("Final bond dimensions:", final_mps.get_bond_dimensions()) |
| 136 | + |
| 137 | + return final_mps, exact_final |
| 138 | + |
| 139 | + |
| 140 | +def benchmark_efficiency(nqubits, bond_d): |
| 141 | + total_time = 0.1 |
| 142 | + dt = 0.01 |
| 143 | + hxx = 0.9 |
| 144 | + hyy = 1.0 |
| 145 | + hzz = 0.3 |
| 146 | + split_rules = {"max_singular_values": bond_d} |
| 147 | + |
| 148 | + # TEBD evolution |
| 149 | + time0 = time.time() |
| 150 | + final_mps = heisenberg_time_evolution_mps( |
| 151 | + nqubits=nqubits, |
| 152 | + total_time=total_time, |
| 153 | + dt=dt, |
| 154 | + hxx=hxx, |
| 155 | + hyy=hyy, |
| 156 | + hzz=hzz, |
| 157 | + split_rules=split_rules, |
| 158 | + ) |
| 159 | + print(final_mps._mps.tensors[0]) |
| 160 | + print("cold start run:", time.time() - time0) |
| 161 | + time0 = time.time() |
| 162 | + final_mps = heisenberg_time_evolution_mps( |
| 163 | + nqubits=nqubits, |
| 164 | + total_time=total_time, |
| 165 | + dt=dt, |
| 166 | + hxx=hxx, |
| 167 | + hyy=hyy, |
| 168 | + hzz=hzz, |
| 169 | + split_rules=split_rules, |
| 170 | + ) |
| 171 | + print(final_mps._mps.tensors[0]) |
| 172 | + print("jitted run:", time.time() - time0) |
| 173 | + |
| 174 | + |
| 175 | +if __name__ == "__main__": |
| 176 | + compare_baseline() |
| 177 | + benchmark_efficiency(24, 64) |
0 commit comments