|
| 1 | +/* Copyright 2022 Google LLC. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. |
| 14 | +==============================================================================*/ |
| 15 | +#define EIGEN_USE_THREADS |
| 16 | + |
| 17 | +#include <algorithm> |
| 18 | +#include <array> |
| 19 | +#include <cmath> |
| 20 | +#include <cstdint> |
| 21 | +#include <cstring> |
| 22 | +#include <limits> |
| 23 | +#include <type_traits> |
| 24 | +#include <vector> |
| 25 | + |
| 26 | +#include "absl/types/span.h" |
| 27 | +#include "tensorflow/core/framework/op_kernel.h" |
| 28 | +#include "tensorflow/core/framework/tensor.h" |
| 29 | +#include "tensorflow/core/framework/tensor_shape.h" |
| 30 | +#include "tensorflow/core/framework/tensor_types.h" |
| 31 | +#include "tensorflow/core/lib/core/errors.h" |
| 32 | +#include "tensorflow/core/lib/core/status.h" |
| 33 | +#include "tensorflow/core/platform/logging.h" |
| 34 | +#include "tensorflow/core/platform/macros.h" |
| 35 | +#include "tensorflow/core/platform/types.h" |
| 36 | +#include "tensorflow_compression/cc/lib/bit_coder.h" |
| 37 | + |
| 38 | +namespace tensorflow_compression { |
| 39 | +namespace { |
| 40 | +namespace errors = tensorflow::errors; |
| 41 | +using tensorflow::DEVICE_CPU; |
| 42 | +using tensorflow::OpKernel; |
| 43 | +using tensorflow::OpKernelConstruction; |
| 44 | +using tensorflow::OpKernelContext; |
| 45 | +using tensorflow::string; |
| 46 | +using tensorflow::Tensor; |
| 47 | +using tensorflow::TensorShape; |
| 48 | +using tensorflow::TensorShapeUtils; |
| 49 | +using tensorflow::tstring; |
| 50 | + |
| 51 | +class RunLengthGammaEncodeOp : public OpKernel { |
| 52 | + public: |
| 53 | + explicit RunLengthGammaEncodeOp(OpKernelConstruction* context) |
| 54 | + : OpKernel(context) {} |
| 55 | + |
| 56 | + void Compute(OpKernelContext* context) override { |
| 57 | + const Tensor& data_tensor = context->input(0); |
| 58 | + auto data = data_tensor.flat<int32_t>(); |
| 59 | + |
| 60 | + Tensor* code_tensor; |
| 61 | + OP_REQUIRES_OK(context, |
| 62 | + context->allocate_output(0, TensorShape{}, &code_tensor)); |
| 63 | + tstring* code = &code_tensor->scalar<tstring>()(); |
| 64 | + |
| 65 | + // Initialize bit encoder and ensure it allocates more than enough bits. |
| 66 | + // The maximum code length is achieved when there are no zeros in the input |
| 67 | + // array. The encoded size of each value is 2 + kMaxGammaBits (1 bit for |
| 68 | + // no leading zeros, 1 bit for sign and kMaxGammaBits for magnitude). If |
| 69 | + // any zeros were present in the input array, then the encoded size would be |
| 70 | + // strictly smaller by kMaxGammaBits and bigger by the difference in |
| 71 | + // encoding (the existing zero run length + 1). |
| 72 | + BitWriter enc; |
| 73 | + enc.Allocate(data.size() * (2 + enc.kMaxGammaBits)); |
| 74 | + // Save number of zeros + 1 preceding next non-zero element. |
| 75 | + uint32_t zero_ct = 1; |
| 76 | + |
| 77 | + // Iterate through data tensor. |
| 78 | + for (size_t i = 0; i < data.size(); i++) { |
| 79 | + // Increment zero count. |
| 80 | + if (data(i) == 0) { |
| 81 | + zero_ct += 1; |
| 82 | + } else { |
| 83 | + // Encode run length of zeros. |
| 84 | + enc.WriteGamma(zero_ct); |
| 85 | + // Encode sign of value. |
| 86 | + enc.WriteOneBit(data(i) > 0); |
| 87 | + // Encode magnitude of value. |
| 88 | + DCHECK_NE(data(i), std::numeric_limits<int32_t>::min()); |
| 89 | + enc.WriteGamma(std::abs(data(i))); |
| 90 | + // Reset zero count (1 because Gamma cannot encode 0). |
| 91 | + zero_ct = 1; |
| 92 | + } |
| 93 | + } |
| 94 | + if (zero_ct > 1) { |
| 95 | + enc.WriteGamma(zero_ct); |
| 96 | + } |
| 97 | + |
| 98 | + // Pad any remaining bits in last byte with 0. |
| 99 | + enc.ZeroPadToByte(); |
| 100 | + // Write encoded bitstring to code. |
| 101 | + code->assign(enc.GetData(), enc.GetBytesWritten()); |
| 102 | + } |
| 103 | +}; |
| 104 | + |
| 105 | +REGISTER_KERNEL_BUILDER(Name("RunLengthGammaEncode").Device(DEVICE_CPU), |
| 106 | + RunLengthGammaEncodeOp); |
| 107 | + |
| 108 | +class RunLengthGammaDecodeOp : public OpKernel { |
| 109 | + public: |
| 110 | + explicit RunLengthGammaDecodeOp(OpKernelConstruction* context) |
| 111 | + : OpKernel(context) {} |
| 112 | + |
| 113 | + void Compute(OpKernelContext* context) override { |
| 114 | + const Tensor& code_tensor = context->input(0); |
| 115 | + const Tensor& shape_tensor = context->input(1); |
| 116 | + |
| 117 | + OP_REQUIRES( |
| 118 | + context, TensorShapeUtils::IsScalar(code_tensor.shape()), |
| 119 | + errors::InvalidArgument("Invalid `code` shape: ", code_tensor.shape())); |
| 120 | + OP_REQUIRES(context, TensorShapeUtils::IsVector(shape_tensor.shape()), |
| 121 | + errors::InvalidArgument("Invalid `shape` shape: ", |
| 122 | + shape_tensor.shape())); |
| 123 | + |
| 124 | + const tstring& code = code_tensor.scalar<tstring>()(); |
| 125 | + |
| 126 | + TensorShape data_shape; |
| 127 | + OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape( |
| 128 | + shape_tensor.vec<int32_t>(), &data_shape)); |
| 129 | + Tensor* data_tensor; |
| 130 | + OP_REQUIRES_OK(context, |
| 131 | + context->allocate_output(0, data_shape, &data_tensor)); |
| 132 | + auto data = data_tensor->flat<int32_t>(); |
| 133 | + |
| 134 | + // Initialize bit decoder to point at the code and expect code size bytes. |
| 135 | + BitReader dec(code); |
| 136 | + |
| 137 | + // Fill data tensor with zeros. |
| 138 | + std::memset(data.data(), 0, data.size() * sizeof(data(0))); |
| 139 | + |
| 140 | + for (size_t i = 0; i < data.size(); i++) { |
| 141 | + // Get number of zeros. |
| 142 | + uint32_t num_zeros = dec.ReadGamma(); |
| 143 | + // Advance the index to the next non-zero element. |
| 144 | + i += num_zeros - 1; |
| 145 | + |
| 146 | + // Account for case where the last element is zero. |
| 147 | + if (i == data.size()) { |
| 148 | + break; |
| 149 | + } |
| 150 | + // TODO(nicolemitchell): return error status instead of crashing |
| 151 | + DCHECK_LT(i, data.size()); |
| 152 | + |
| 153 | + // Get sign of value. |
| 154 | + uint32_t positive = dec.ReadOneBit(); |
| 155 | + |
| 156 | + // Get value. |
| 157 | + uint32_t value = dec.ReadGamma(); |
| 158 | + |
| 159 | + // Write value to data tensor element at index. |
| 160 | + DCHECK_LE(value, std::numeric_limits<int32_t>::max()); |
| 161 | + data(i) = positive ? value : -static_cast<int32_t>(value); |
| 162 | + } |
| 163 | + |
| 164 | + OP_REQUIRES(context, dec.Close().ok(), |
| 165 | + tensorflow::errors::DataLoss("Decoding error.")); |
| 166 | + } |
| 167 | +}; |
| 168 | + |
| 169 | +REGISTER_KERNEL_BUILDER(Name("RunLengthGammaDecode").Device(DEVICE_CPU), |
| 170 | + RunLengthGammaDecodeOp); |
| 171 | + |
| 172 | +} // namespace |
| 173 | +} // namespace tensorflow_compression |
0 commit comments