Skip to content

Commit 198fc0a

Browse files
author
Johannes Ballé
committed
Unified naming for parameterizer objects.
1 parent 10837a6 commit 198fc0a

File tree

9 files changed

+68
-72
lines changed

9 files changed

+68
-72
lines changed

docs/api_docs/python/tfc/GDN.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -91,10 +91,10 @@ more flexible, as `beta` and `gamma` are trainable parameters.
9191
A good default setting is somewhere between 0 and 0.5.
9292
* <b>`data_format`</b>: Format of input tensor. Currently supports `'channels_first'`
9393
and `'channels_last'`.
94-
* <b>`beta_parameterization`</b>: Parameterizer object for beta parameter. Defaults
95-
to NonnegativeParameterizer with a minimum value of 1e-6.
96-
* <b>`gamma_parameterization`</b>: Parameterizer object for gamma parameter.
97-
Defaults to NonnegativeParameterizer with a minimum value of 0.
94+
* <b>`beta_parameterizer`</b>: Reparameterization for beta parameter. Defaults to
95+
`NonnegativeParameterizer` with a minimum value of `1e-6`.
96+
* <b>`gamma_parameterizer`</b>: Reparameterization for gamma parameter. Defaults to
97+
`NonnegativeParameterizer` with a minimum value of `0`.
9898
* <b>`activity_regularizer`</b>: Regularizer function for the output.
9999
* <b>`trainable`</b>: Boolean, if `True`, also add variables to the graph collection
100100
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
@@ -314,8 +314,8 @@ __init__(
314314
rectify=False,
315315
gamma_init=0.1,
316316
data_format='channels_last',
317-
beta_parameterization=_default_beta_param,
318-
gamma_parameterization=_default_gamma_param,
317+
beta_parameterizer=_default_beta_param,
318+
gamma_parameterizer=_default_gamma_param,
319319
activity_regularizer=None,
320320
trainable=True,
321321
name=None,

docs/api_docs/python/tfc/SignalConv1D.md

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<meta itemprop="property" content="activity_regularizer"/>
55
<meta itemprop="property" content="bias"/>
66
<meta itemprop="property" content="bias_initializer"/>
7-
<meta itemprop="property" content="bias_parameterization"/>
7+
<meta itemprop="property" content="bias_parameterizer"/>
88
<meta itemprop="property" content="bias_regularizer"/>
99
<meta itemprop="property" content="channel_separable"/>
1010
<meta itemprop="property" content="corr"/>
@@ -19,7 +19,7 @@
1919
<meta itemprop="property" content="input_shape"/>
2020
<meta itemprop="property" content="kernel"/>
2121
<meta itemprop="property" content="kernel_initializer"/>
22-
<meta itemprop="property" content="kernel_parameterization"/>
22+
<meta itemprop="property" content="kernel_parameterizer"/>
2323
<meta itemprop="property" content="kernel_regularizer"/>
2424
<meta itemprop="property" content="kernel_support"/>
2525
<meta itemprop="property" content="losses"/>
@@ -245,11 +245,10 @@ will throw an exception.
245245
* <b>`kernel_regularizer`</b>: Optional regularizer for the filter kernel.
246246
* <b>`bias_regularizer`</b>: Optional regularizer for the bias vector.
247247
* <b>`activity_regularizer`</b>: Regularizer function for the output.
248-
* <b>`kernel_parameterization`</b>: Reparameterization applied to filter kernel. If not
249-
`None`, must be a parameterization object. Defaults to RDFT
250-
parameterization.
251-
* <b>`bias_parameterization`</b>: Reparameterization applied to bias. If not `None`,
252-
must be a parameterization object.
248+
* <b>`kernel_parameterizer`</b>: Reparameterization applied to filter kernel. If not
249+
`None`, must be a `Parameterizer` object. Defaults to `RDFTParameterizer`.
250+
* <b>`bias_parameterizer`</b>: Reparameterization applied to bias. If not `None`, must
251+
be a `Parameterizer` object.
253252
* <b>`trainable`</b>: Boolean. Whether the layer should be trained.
254253
* <b>`name`</b>: String. The name of the layer.
255254
* <b>`dtype`</b>: Default dtype of the layer's parameters (default of `None` means use
@@ -272,8 +271,8 @@ Read-only properties:
272271
* <b>`kernel_regularizer`</b>: See above.
273272
* <b>`bias_regularizer`</b>: See above.
274273
* <b>`activity_regularizer`</b>: See above.
275-
* <b>`kernel_parameterization`</b>: See above.
276-
* <b>`bias_parameterization`</b>: See above.
274+
* <b>`kernel_parameterizer`</b>: See above.
275+
* <b>`bias_parameterizer`</b>: See above.
277276
* <b>`name`</b>: See above.
278277
* <b>`dtype`</b>: See above.
279278
* <b>`kernel`</b>: `Tensor`-like object. The convolution kernel as applied to the
@@ -309,7 +308,7 @@ Optional regularizer function for the output of this layer.
309308

310309

311310

312-
<h3 id="bias_parameterization"><code>bias_parameterization</code></h3>
311+
<h3 id="bias_parameterizer"><code>bias_parameterizer</code></h3>
313312

314313

315314

@@ -417,7 +416,7 @@ Input shape, as an integer shape tuple
417416

418417

419418

420-
<h3 id="kernel_parameterization"><code>kernel_parameterization</code></h3>
419+
<h3 id="kernel_parameterizer"><code>kernel_parameterizer</code></h3>
421420

422421

423422

docs/api_docs/python/tfc/SignalConv2D.md

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<meta itemprop="property" content="activity_regularizer"/>
55
<meta itemprop="property" content="bias"/>
66
<meta itemprop="property" content="bias_initializer"/>
7-
<meta itemprop="property" content="bias_parameterization"/>
7+
<meta itemprop="property" content="bias_parameterizer"/>
88
<meta itemprop="property" content="bias_regularizer"/>
99
<meta itemprop="property" content="channel_separable"/>
1010
<meta itemprop="property" content="corr"/>
@@ -19,7 +19,7 @@
1919
<meta itemprop="property" content="input_shape"/>
2020
<meta itemprop="property" content="kernel"/>
2121
<meta itemprop="property" content="kernel_initializer"/>
22-
<meta itemprop="property" content="kernel_parameterization"/>
22+
<meta itemprop="property" content="kernel_parameterizer"/>
2323
<meta itemprop="property" content="kernel_regularizer"/>
2424
<meta itemprop="property" content="kernel_support"/>
2525
<meta itemprop="property" content="losses"/>
@@ -245,11 +245,10 @@ will throw an exception.
245245
* <b>`kernel_regularizer`</b>: Optional regularizer for the filter kernel.
246246
* <b>`bias_regularizer`</b>: Optional regularizer for the bias vector.
247247
* <b>`activity_regularizer`</b>: Regularizer function for the output.
248-
* <b>`kernel_parameterization`</b>: Reparameterization applied to filter kernel. If not
249-
`None`, must be a parameterization object. Defaults to RDFT
250-
parameterization.
251-
* <b>`bias_parameterization`</b>: Reparameterization applied to bias. If not `None`,
252-
must be a parameterization object.
248+
* <b>`kernel_parameterizer`</b>: Reparameterization applied to filter kernel. If not
249+
`None`, must be a `Parameterizer` object. Defaults to `RDFTParameterizer`.
250+
* <b>`bias_parameterizer`</b>: Reparameterization applied to bias. If not `None`, must
251+
be a `Parameterizer` object.
253252
* <b>`trainable`</b>: Boolean. Whether the layer should be trained.
254253
* <b>`name`</b>: String. The name of the layer.
255254
* <b>`dtype`</b>: Default dtype of the layer's parameters (default of `None` means use
@@ -272,8 +271,8 @@ Read-only properties:
272271
* <b>`kernel_regularizer`</b>: See above.
273272
* <b>`bias_regularizer`</b>: See above.
274273
* <b>`activity_regularizer`</b>: See above.
275-
* <b>`kernel_parameterization`</b>: See above.
276-
* <b>`bias_parameterization`</b>: See above.
274+
* <b>`kernel_parameterizer`</b>: See above.
275+
* <b>`bias_parameterizer`</b>: See above.
277276
* <b>`name`</b>: See above.
278277
* <b>`dtype`</b>: See above.
279278
* <b>`kernel`</b>: `Tensor`-like object. The convolution kernel as applied to the
@@ -309,7 +308,7 @@ Optional regularizer function for the output of this layer.
309308

310309

311310

312-
<h3 id="bias_parameterization"><code>bias_parameterization</code></h3>
311+
<h3 id="bias_parameterizer"><code>bias_parameterizer</code></h3>
313312

314313

315314

@@ -417,7 +416,7 @@ Input shape, as an integer shape tuple
417416

418417

419418

420-
<h3 id="kernel_parameterization"><code>kernel_parameterization</code></h3>
419+
<h3 id="kernel_parameterizer"><code>kernel_parameterizer</code></h3>
421420

422421

423422

docs/api_docs/python/tfc/SignalConv3D.md

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<meta itemprop="property" content="activity_regularizer"/>
55
<meta itemprop="property" content="bias"/>
66
<meta itemprop="property" content="bias_initializer"/>
7-
<meta itemprop="property" content="bias_parameterization"/>
7+
<meta itemprop="property" content="bias_parameterizer"/>
88
<meta itemprop="property" content="bias_regularizer"/>
99
<meta itemprop="property" content="channel_separable"/>
1010
<meta itemprop="property" content="corr"/>
@@ -19,7 +19,7 @@
1919
<meta itemprop="property" content="input_shape"/>
2020
<meta itemprop="property" content="kernel"/>
2121
<meta itemprop="property" content="kernel_initializer"/>
22-
<meta itemprop="property" content="kernel_parameterization"/>
22+
<meta itemprop="property" content="kernel_parameterizer"/>
2323
<meta itemprop="property" content="kernel_regularizer"/>
2424
<meta itemprop="property" content="kernel_support"/>
2525
<meta itemprop="property" content="losses"/>
@@ -245,11 +245,10 @@ will throw an exception.
245245
* <b>`kernel_regularizer`</b>: Optional regularizer for the filter kernel.
246246
* <b>`bias_regularizer`</b>: Optional regularizer for the bias vector.
247247
* <b>`activity_regularizer`</b>: Regularizer function for the output.
248-
* <b>`kernel_parameterization`</b>: Reparameterization applied to filter kernel. If not
249-
`None`, must be a parameterization object. Defaults to RDFT
250-
parameterization.
251-
* <b>`bias_parameterization`</b>: Reparameterization applied to bias. If not `None`,
252-
must be a parameterization object.
248+
* <b>`kernel_parameterizer`</b>: Reparameterization applied to filter kernel. If not
249+
`None`, must be a `Parameterizer` object. Defaults to `RDFTParameterizer`.
250+
* <b>`bias_parameterizer`</b>: Reparameterization applied to bias. If not `None`, must
251+
be a `Parameterizer` object.
253252
* <b>`trainable`</b>: Boolean. Whether the layer should be trained.
254253
* <b>`name`</b>: String. The name of the layer.
255254
* <b>`dtype`</b>: Default dtype of the layer's parameters (default of `None` means use
@@ -272,8 +271,8 @@ Read-only properties:
272271
* <b>`kernel_regularizer`</b>: See above.
273272
* <b>`bias_regularizer`</b>: See above.
274273
* <b>`activity_regularizer`</b>: See above.
275-
* <b>`kernel_parameterization`</b>: See above.
276-
* <b>`bias_parameterization`</b>: See above.
274+
* <b>`kernel_parameterizer`</b>: See above.
275+
* <b>`bias_parameterizer`</b>: See above.
277276
* <b>`name`</b>: See above.
278277
* <b>`dtype`</b>: See above.
279278
* <b>`kernel`</b>: `Tensor`-like object. The convolution kernel as applied to the
@@ -309,7 +308,7 @@ Optional regularizer function for the output of this layer.
309308

310309

311310

312-
<h3 id="bias_parameterization"><code>bias_parameterization</code></h3>
311+
<h3 id="bias_parameterizer"><code>bias_parameterizer</code></h3>
313312

314313

315314

@@ -417,7 +416,7 @@ Input shape, as an integer shape tuple
417416

418417

419418

420-
<h3 id="kernel_parameterization"><code>kernel_parameterization</code></h3>
419+
<h3 id="kernel_parameterizer"><code>kernel_parameterizer</code></h3>
421420

422421

423422

docs/api_docs/python/tfc/irdft_matrix.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ Example code for kernel creation, assuming 2D kernels:
2020

2121
```
2222
def create_kernel(init):
23-
shape = init.get_shape().as_list()
23+
shape = init.shape.as_list()
2424
matrix = irdft_matrix(shape[:2])
2525
init = tf.reshape(init, (shape[0] * shape[1], shape[2] * shape[3]))
2626
init = tf.matmul(tf.transpose(matrix), init)

tensorflow_compression/python/layers/gdn.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -75,10 +75,10 @@ class GDN(base.Layer):
7575
A good default setting is somewhere between 0 and 0.5.
7676
data_format: Format of input tensor. Currently supports `'channels_first'`
7777
and `'channels_last'`.
78-
beta_parameterization: Parameterizer object for beta parameter. Defaults
79-
to NonnegativeParameterizer with a minimum value of 1e-6.
80-
gamma_parameterization: Parameterizer object for gamma parameter.
81-
Defaults to NonnegativeParameterizer with a minimum value of 0.
78+
beta_parameterizer: Reparameterization for beta parameter. Defaults to
79+
`NonnegativeParameterizer` with a minimum value of `1e-6`.
80+
gamma_parameterizer: Reparameterization for gamma parameter. Defaults to
81+
`NonnegativeParameterizer` with a minimum value of `0`.
8282
activity_regularizer: Regularizer function for the output.
8383
trainable: Boolean, if `True`, also add variables to the graph collection
8484
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
@@ -100,8 +100,8 @@ def __init__(self,
100100
rectify=False,
101101
gamma_init=.1,
102102
data_format="channels_last",
103-
beta_parameterization=_default_beta_param,
104-
gamma_parameterization=_default_gamma_param,
103+
beta_parameterizer=_default_beta_param,
104+
gamma_parameterizer=_default_gamma_param,
105105
activity_regularizer=None,
106106
trainable=True,
107107
name=None,
@@ -113,8 +113,8 @@ def __init__(self,
113113
self.rectify = bool(rectify)
114114
self._gamma_init = float(gamma_init)
115115
self.data_format = data_format
116-
self._beta_parameterization = beta_parameterization
117-
self._gamma_parameterization = gamma_parameterization
116+
self._beta_parameterizer = beta_parameterizer
117+
self._gamma_parameterizer = gamma_parameterizer
118118
self._channel_axis() # trigger ValueError early
119119
self.input_spec = base.InputSpec(min_ndim=2)
120120

@@ -136,11 +136,11 @@ def build(self, input_shape):
136136
self.input_spec = base.InputSpec(ndim=input_shape.ndims,
137137
axes={channel_axis: num_channels})
138138

139-
self.beta = self._beta_parameterization(
139+
self.beta = self._beta_parameterizer(
140140
name="beta", shape=[num_channels], dtype=self.dtype,
141141
getter=self.add_variable, initializer=init_ops.Ones())
142142

143-
self.gamma = self._gamma_parameterization(
143+
self.gamma = self._gamma_parameterizer(
144144
name="gamma", shape=[num_channels, num_channels], dtype=self.dtype,
145145
getter=self.add_variable,
146146
initializer=init_ops.Identity(gain=self._gamma_init))

tensorflow_compression/python/layers/signal_conv.py

Lines changed: 18 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -213,11 +213,10 @@ class _SignalConv(base.Layer):
213213
kernel_regularizer: Optional regularizer for the filter kernel.
214214
bias_regularizer: Optional regularizer for the bias vector.
215215
activity_regularizer: Regularizer function for the output.
216-
kernel_parameterization: Reparameterization applied to filter kernel. If not
217-
`None`, must be a parameterization object. Defaults to RDFT
218-
parameterization.
219-
bias_parameterization: Reparameterization applied to bias. If not `None`,
220-
must be a parameterization object.
216+
kernel_parameterizer: Reparameterization applied to filter kernel. If not
217+
`None`, must be a `Parameterizer` object. Defaults to `RDFTParameterizer`.
218+
bias_parameterizer: Reparameterization applied to bias. If not `None`, must
219+
be a `Parameterizer` object.
221220
trainable: Boolean. Whether the layer should be trained.
222221
name: String. The name of the layer.
223222
dtype: Default dtype of the layer's parameters (default of `None` means use
@@ -240,8 +239,8 @@ class _SignalConv(base.Layer):
240239
kernel_regularizer: See above.
241240
bias_regularizer: See above.
242241
activity_regularizer: See above.
243-
kernel_parameterization: See above.
244-
bias_parameterization: See above.
242+
kernel_parameterizer: See above.
243+
bias_parameterizer: See above.
245244
name: See above.
246245
dtype: See above.
247246
kernel: `Tensor`-like object. The convolution kernel as applied to the
@@ -268,8 +267,8 @@ def __init__(self, rank, filters, kernel_support,
268267
kernel_initializer=init_ops.VarianceScaling(),
269268
bias_initializer=init_ops.Zeros(),
270269
kernel_regularizer=None, bias_regularizer=None,
271-
kernel_parameterization=parameterizers.RDFTParameterizer(),
272-
bias_parameterization=None,
270+
kernel_parameterizer=parameterizers.RDFTParameterizer(),
271+
bias_parameterizer=None,
273272
**kwargs):
274273
super(_SignalConv, self).__init__(**kwargs)
275274
self._rank = int(rank)
@@ -299,8 +298,8 @@ def __init__(self, rank, filters, kernel_support,
299298
self._bias_initializer = bias_initializer
300299
self._kernel_regularizer = kernel_regularizer
301300
self._bias_regularizer = bias_regularizer
302-
self._kernel_parameterization = kernel_parameterization
303-
self._bias_parameterization = bias_parameterization
301+
self._kernel_parameterizer = kernel_parameterizer
302+
self._bias_parameterizer = bias_parameterizer
304303
self.input_spec = base.InputSpec(ndim=self._rank + 2)
305304

306305
@property
@@ -364,12 +363,12 @@ def bias_regularizer(self):
364363
return self._bias_regularizer
365364

366365
@property
367-
def kernel_parameterization(self):
368-
return self._kernel_parameterization
366+
def kernel_parameterizer(self):
367+
return self._kernel_parameterizer
369368

370369
@property
371-
def bias_parameterization(self):
372-
return self._bias_parameterization
370+
def bias_parameterizer(self):
371+
return self._bias_parameterizer
373372

374373
@property
375374
def kernel(self):
@@ -401,21 +400,21 @@ def build(self, input_shape):
401400
else:
402401
output_channels = self.filters
403402

404-
if self.kernel_parameterization is None:
403+
if self.kernel_parameterizer is None:
405404
getter = self.add_variable
406405
else:
407406
getter = functools.partial(
408-
self.kernel_parameterization, getter=self.add_variable)
407+
self.kernel_parameterizer, getter=self.add_variable)
409408
self._kernel = getter(
410409
name="kernel", shape=kernel_shape, dtype=self.dtype,
411410
initializer=self.kernel_initializer,
412411
regularizer=self.kernel_regularizer)
413412

414-
if self.bias_parameterization is None:
413+
if self.bias_parameterizer is None:
415414
getter = self.add_variable
416415
else:
417416
getter = functools.partial(
418-
self.bias_parameterization, getter=self.add_variable)
417+
self.bias_parameterizer, getter=self.add_variable)
419418
self._bias = None if not self.use_bias else getter(
420419
name="bias", shape=(output_channels,), dtype=self.dtype,
421420
initializer=self.bias_initializer, regularizer=self.bias_regularizer)

tensorflow_compression/python/layers/signal_conv_test.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ def run_valid(self, batch, input_support, channels, filters, kernel_support,
110110
strides_up=strides_up, padding="valid", extra_pad_end=extra_pad_end,
111111
channel_separable=channel_separable, data_format=data_format,
112112
activation=activation, use_bias=use_bias,
113-
kernel_parameterization=tf_kernel)
113+
kernel_parameterizer=tf_kernel)
114114
tf_outputs = layer(tf_inputs)
115115
with self.test_session() as sess:
116116
sess.run(tf.global_variables_initializer())
@@ -159,7 +159,7 @@ def run_same(self, batch, input_support, channels, filters, kernel_support,
159159
strides_up=strides_up, padding=padding, extra_pad_end=extra_pad_end,
160160
channel_separable=channel_separable, data_format=data_format,
161161
activation=activation, use_bias=use_bias,
162-
kernel_parameterization=tf_kernel)
162+
kernel_parameterizer=tf_kernel)
163163
tf_outputs = layer(tf_inputs)
164164
with self.test_session() as sess:
165165
sess.run(tf.global_variables_initializer())

tensorflow_compression/python/ops/spectral_ops.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ def irdft_matrix(shape, dtype=dtypes.float32):
4242
4343
```
4444
def create_kernel(init):
45-
shape = init.get_shape().as_list()
45+
shape = init.shape.as_list()
4646
matrix = irdft_matrix(shape[:2])
4747
init = tf.reshape(init, (shape[0] * shape[1], shape[2] * shape[3]))
4848
init = tf.matmul(tf.transpose(matrix), init)

0 commit comments

Comments
 (0)