@@ -9,14 +9,12 @@ evaluation data sets are covered.
9
9
10
10
### Table of Contents
11
11
12
- * [ Image Compression Methods] ( #image_compression_methods )
13
- * [ Quality Metrics] ( #quality_metrics )
14
- * [ Data Sets for Evaluation] ( #data_sets_for_evaluation )
12
+ * [ Image Compression Methods] ( #image-compression-methods )
13
+ * [ Quality Metrics] ( #quality-metrics )
14
+ * [ Data Sets for Evaluation] ( #data-sets-for-evaluation )
15
15
16
16
## Image Compression Methods
17
17
18
- --------------------------------------------------------------------------------
19
-
20
18
### Standard (Hand-Engineered) Codecs
21
19
22
20
* JPEG (4:2:0)
@@ -27,73 +25,60 @@ evaluation data sets are covered.
27
25
28
26
### Learning-based Methods
29
27
30
- 1 . [ Context-adaptive Entropy Model for End-to-end Optimized Image Compression]
31
- (https://openreview.net/forum?id=HyxKIiAqYQ) \
32
- Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack \
28
+ 1 . [ Context-adaptive Entropy Model for End-to-end Optimized Image Compression] ( https://openreview.net/forum?id=HyxKIiAqYQ ) \
29
+ Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack\
33
30
Int. Conf. on Learning Representations (ICLR) 2019
34
31
35
32
2 . [ Joint autoregressive and hierarchical priors for learned image
36
- compression]
37
- (https://arxiv.org/abs/1809.02736 ) \
38
- David Minnen, Johannes Ballé, and George Toderici \
33
+ compression] ( https://arxiv.org/abs/1809.02736 ) \
34
+ David Minnen, Johannes Ballé, and George Toderici\
39
35
Advances in Neural Information Processing Systems (NeurIPS) 2018
40
36
41
- 3 . [ Learning a Code-Space Predictor by Exploiting Intra-Image-Dependencies]
42
- (http://bmvc2018.org/contents/papers/0491.pdf ) \
43
- Jan P. Klopp, Yu-Chiang Frank Wang, Shao-Yi Chien, and Liang-Gee Chen \
37
+ 3 . [ Learning a Code-Space Predictor by Exploiting Intra-Image-Dependencies] ( http://bmvc2018.org/contents/papers/0491.pdf ) \
38
+ Jan P. Klopp, Yu-Chiang Frank Wang, Shao-Yi Chien, and Liang-Gee Chen\
44
39
British Machine Vision Conference (BMVC) 2018
45
40
46
- 4 . [ Variational Image Compression with a Scale Hyperprior]
47
- (https://arxiv.org/abs/1802.01436 ) \
41
+ 4 . [ Variational Image Compression with a Scale Hyperprior] ( https://arxiv.org/abs/1802.01436 ) \
48
42
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick
49
- Johnston \
43
+ Johnston\
50
44
Int. Conf. on Learning Representations (ICLR) 2018
51
45
52
46
5 . [ Image-dependent local entropy models for image compression with deep
53
- networks]
54
- (https://arxiv.org/abs/1805.12295 ) \
47
+ networks] ( https://arxiv.org/abs/1805.12295 ) \
55
48
David Minnen, George Toderici, Saurabh Singh, Sung Jin Hwang, and Michele
56
- Covell \
49
+ Covell\
57
50
Int. Conf. on Image Processing (ICIP) 2018
58
51
59
52
6 . [ Improved Lossy Image Compression With Priming and Spatially Adaptive Bit
60
- Rates for Recurrent Networks]
61
- (https://arxiv.org/abs/1703.10114 ) \
53
+ Rates for Recurrent Networks] ( https://arxiv.org/abs/1703.10114 ) \
62
54
Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh,
63
- Troy Chinen, Sung Jin Hwang, Joel Shor, and George Toderici \
55
+ Troy Chinen, Sung Jin Hwang, Joel Shor, and George Toderici\
64
56
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2018
65
57
66
- 7 . [ Real-Time Adaptive Image Compression]
67
- (https://arxiv.org/abs/1705.05823 ) \
68
- Oren Rippel and Lubomir Bourdev \
58
+ 7 . [ Real-Time Adaptive Image Compression] ( https://arxiv.org/abs/1705.05823 ) \
59
+ Oren Rippel and Lubomir Bourdev\
69
60
International Conference on Machine Learning (ICML) 2017
70
61
71
- 8 . [ End-to-end Optimized Image Compression]
72
- (https://arxiv.org/abs/1611.01704 ) \
73
- Johannes Ballé, Valero Laparra, and Eero P. Simoncelli \
62
+ 8 . [ End-to-end Optimized Image Compression] ( https://arxiv.org/abs/1611.01704 ) \
63
+ Johannes Ballé, Valero Laparra, and Eero P. Simoncelli\
74
64
Int. Conf. on Learning Representations (ICLR) 2017
75
65
76
- 9 . [ Lossy Image Compression with Compressive Autoencoders]
77
- (https://openreview.net/forum?id=rJiNwv9gg ) \
78
- Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár \
66
+ 9 . [ Lossy Image Compression with Compressive Autoencoders] ( https://openreview.net/forum?id=rJiNwv9gg ) \
67
+ Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár\
79
68
Int. Conf. on Learning Representations (ICLR) 2017
80
69
81
- 10 . [ Spatially adaptive image compression using a tiled deep network]
82
- (https://arxiv.org/abs/1802.02629 ) \
70
+ 10 . [ Spatially adaptive image compression using a tiled deep network] ( https://arxiv.org/abs/1802.02629 ) \
83
71
David Minnen, George Toderici, Michele Covell, Troy Chinen, Nick Johnston,
84
- Joel Shor, Sung Jin Hwang, Damien Vincent, and Saurabh Singh \
72
+ Joel Shor, Sung Jin Hwang, Damien Vincent, and Saurabh Singh\
85
73
Int. Conference on Image Processing (ICIP) 2017
86
74
87
- 11 . [ Full Resolution Image Compression with Recurrent Neural Networks]
88
- (https://arxiv.org/abs/1608.05148 ) \
75
+ 11 . [ Full Resolution Image Compression with Recurrent Neural Networks] ( https://arxiv.org/abs/1608.05148 ) \
89
76
George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David
90
- Minnen, Joel Shor, and Michele Covell \
77
+ Minnen, Joel Shor, and Michele Covell\
91
78
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017
92
79
93
80
## Quality Metrics
94
81
95
- --------------------------------------------------------------------------------
96
-
97
82
### Peak Signal-to-Noise Ratio (PSNR)
98
83
99
84
According to
@@ -145,18 +130,16 @@ luminance channel (`Y'` in `Y'CbCr`) or by using a 6:1:1 weighted average over
145
130
146
131
## Data Sets for Evaluation
147
132
148
- --------------------------------------------------------------------------------
149
-
150
133
### Kodak
151
134
152
135
The Kodak data set is a collection of 24 images with resolution 768x512 (or
153
136
512x768). The images are available as PNG files here:
154
137
[ http://r0k.us/graphics/kodak ] ( http://r0k.us/graphics/kodak )
155
138
156
139
@misc{kodak,
157
- title= "Kodak Lossless True Color Image Suite ({PhotoCD PCD0992})",
158
- author= "Eastman Kodak",
159
- url = { http://r0k.us/graphics/kodak} ,
140
+ title = "Kodak Lossless True Color Image Suite ({PhotoCD PCD0992})",
141
+ author = "Eastman Kodak",
142
+ url = " http://r0k.us/graphics/kodak" ,
160
143
}
161
144
162
145
### Tecnick
@@ -166,9 +149,9 @@ here (511 MB):
166
149
[ https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip ] ( https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip )
167
150
168
151
@inproceedings{tecnick,
169
- author = { N. Asuni and A. Giachetti} ,
170
- title = {{ TESTIMAGES}: A large-scale archive for testing visual devices and basic image processing algorithms {(SAMPLING 1200 RGB set)}} ,
171
- year = { 2014} ,
172
- booktitle = {{ STAG}: Smart Tools and Apps for Graphics}
173
- url = { https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip} ,
152
+ author = " N. Asuni and A. Giachetti" ,
153
+ title = "{ TESTIMAGES}: A large-scale archive for testing visual devices and basic image processing algorithms {(SAMPLING 1200 RGB set)}" ,
154
+ year = " 2014" ,
155
+ booktitle = "{ STAG}: Smart Tools and Apps for Graphics",
156
+ url = " https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip" ,
174
157
}
0 commit comments