Skip to content

Commit 4713cd7

Browse files
minnendcopybara-github
authored andcommitted
Updates the results page for to fix markdown formatting.
1) Links should go to github repo view. 2) Fix double horizontal rule 3) Fix links (github doesn't like extra whitespace in [name](url)). PiperOrigin-RevId: 296308708 Change-Id: I9159ef7e6d3f991dcc044cce92341982a073311d
1 parent 24b0cb2 commit 4713cd7

File tree

2 files changed

+34
-51
lines changed

2 files changed

+34
-51
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -247,7 +247,7 @@ the same steps, but the Docker image should not be necessary.
247247

248248
We provide evaluation results for several image compression methods in terms of
249249
different metrics in different colorspaces. Please see the
250-
[results subdirectory](https://tensorflow.github.io/compression/results/readme/image_compression/README.md)
250+
[results subdirectory](https://github.com/tensorflow/compression/tree/master/results/image_compression)
251251
for more information.
252252

253253
## Authors

results/image_compression/README.md

Lines changed: 33 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -9,14 +9,12 @@ evaluation data sets are covered.
99

1010
### Table of Contents
1111

12-
* [Image Compression Methods](#image_compression_methods)
13-
* [Quality Metrics](#quality_metrics)
14-
* [Data Sets for Evaluation](#data_sets_for_evaluation)
12+
* [Image Compression Methods](#image-compression-methods)
13+
* [Quality Metrics](#quality-metrics)
14+
* [Data Sets for Evaluation](#data-sets-for-evaluation)
1515

1616
## Image Compression Methods
1717

18-
--------------------------------------------------------------------------------
19-
2018
### Standard (Hand-Engineered) Codecs
2119

2220
* JPEG (4:2:0)
@@ -27,73 +25,60 @@ evaluation data sets are covered.
2725

2826
### Learning-based Methods
2927

30-
1. [Context-adaptive Entropy Model for End-to-end Optimized Image Compression]
31-
(https://openreview.net/forum?id=HyxKIiAqYQ) \
32-
Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack \
28+
1. [Context-adaptive Entropy Model for End-to-end Optimized Image Compression](https://openreview.net/forum?id=HyxKIiAqYQ)\
29+
Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack\
3330
Int. Conf. on Learning Representations (ICLR) 2019
3431

3532
2. [Joint autoregressive and hierarchical priors for learned image
36-
compression]
37-
(https://arxiv.org/abs/1809.02736) \
38-
David Minnen, Johannes Ballé, and George Toderici \
33+
compression](https://arxiv.org/abs/1809.02736)\
34+
David Minnen, Johannes Ballé, and George Toderici\
3935
Advances in Neural Information Processing Systems (NeurIPS) 2018
4036

41-
3. [Learning a Code-Space Predictor by Exploiting Intra-Image-Dependencies]
42-
(http://bmvc2018.org/contents/papers/0491.pdf) \
43-
Jan P. Klopp, Yu-Chiang Frank Wang, Shao-Yi Chien, and Liang-Gee Chen \
37+
3. [Learning a Code-Space Predictor by Exploiting Intra-Image-Dependencies](http://bmvc2018.org/contents/papers/0491.pdf)\
38+
Jan P. Klopp, Yu-Chiang Frank Wang, Shao-Yi Chien, and Liang-Gee Chen\
4439
British Machine Vision Conference (BMVC) 2018
4540

46-
4. [Variational Image Compression with a Scale Hyperprior]
47-
(https://arxiv.org/abs/1802.01436) \
41+
4. [Variational Image Compression with a Scale Hyperprior](https://arxiv.org/abs/1802.01436)\
4842
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick
49-
Johnston \
43+
Johnston\
5044
Int. Conf. on Learning Representations (ICLR) 2018
5145

5246
5. [Image-dependent local entropy models for image compression with deep
53-
networks]
54-
(https://arxiv.org/abs/1805.12295) \
47+
networks](https://arxiv.org/abs/1805.12295)\
5548
David Minnen, George Toderici, Saurabh Singh, Sung Jin Hwang, and Michele
56-
Covell \
49+
Covell\
5750
Int. Conf. on Image Processing (ICIP) 2018
5851

5952
6. [Improved Lossy Image Compression With Priming and Spatially Adaptive Bit
60-
Rates for Recurrent Networks]
61-
(https://arxiv.org/abs/1703.10114) \
53+
Rates for Recurrent Networks](https://arxiv.org/abs/1703.10114)\
6254
Nick Johnston, Damien Vincent, David Minnen, Michele Covell, Saurabh Singh,
63-
Troy Chinen, Sung Jin Hwang, Joel Shor, and George Toderici \
55+
Troy Chinen, Sung Jin Hwang, Joel Shor, and George Toderici\
6456
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2018
6557

66-
7. [Real-Time Adaptive Image Compression]
67-
(https://arxiv.org/abs/1705.05823) \
68-
Oren Rippel and Lubomir Bourdev \
58+
7. [Real-Time Adaptive Image Compression](https://arxiv.org/abs/1705.05823)\
59+
Oren Rippel and Lubomir Bourdev\
6960
International Conference on Machine Learning (ICML) 2017
7061

71-
8. [End-to-end Optimized Image Compression]
72-
(https://arxiv.org/abs/1611.01704) \
73-
Johannes Ballé, Valero Laparra, and Eero P. Simoncelli \
62+
8. [End-to-end Optimized Image Compression](https://arxiv.org/abs/1611.01704)\
63+
Johannes Ballé, Valero Laparra, and Eero P. Simoncelli\
7464
Int. Conf. on Learning Representations (ICLR) 2017
7565

76-
9. [Lossy Image Compression with Compressive Autoencoders]
77-
(https://openreview.net/forum?id=rJiNwv9gg) \
78-
Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár \
66+
9. [Lossy Image Compression with Compressive Autoencoders](https://openreview.net/forum?id=rJiNwv9gg)\
67+
Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár\
7968
Int. Conf. on Learning Representations (ICLR) 2017
8069

81-
10. [Spatially adaptive image compression using a tiled deep network]
82-
(https://arxiv.org/abs/1802.02629) \
70+
10. [Spatially adaptive image compression using a tiled deep network](https://arxiv.org/abs/1802.02629)\
8371
David Minnen, George Toderici, Michele Covell, Troy Chinen, Nick Johnston,
84-
Joel Shor, Sung Jin Hwang, Damien Vincent, and Saurabh Singh \
72+
Joel Shor, Sung Jin Hwang, Damien Vincent, and Saurabh Singh\
8573
Int. Conference on Image Processing (ICIP) 2017
8674

87-
11. [Full Resolution Image Compression with Recurrent Neural Networks]
88-
(https://arxiv.org/abs/1608.05148) \
75+
11. [Full Resolution Image Compression with Recurrent Neural Networks](https://arxiv.org/abs/1608.05148)\
8976
George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David
90-
Minnen, Joel Shor, and Michele Covell \
77+
Minnen, Joel Shor, and Michele Covell\
9178
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017
9279

9380
## Quality Metrics
9481

95-
--------------------------------------------------------------------------------
96-
9782
### Peak Signal-to-Noise Ratio (PSNR)
9883

9984
According to
@@ -145,18 +130,16 @@ luminance channel (`Y'` in `Y'CbCr`) or by using a 6:1:1 weighted average over
145130

146131
## Data Sets for Evaluation
147132

148-
--------------------------------------------------------------------------------
149-
150133
### Kodak
151134

152135
The Kodak data set is a collection of 24 images with resolution 768x512 (or
153136
512x768). The images are available as PNG files here:
154137
[http://r0k.us/graphics/kodak](http://r0k.us/graphics/kodak)
155138

156139
@misc{kodak,
157-
title="Kodak Lossless True Color Image Suite ({PhotoCD PCD0992})",
158-
author="Eastman Kodak",
159-
url = {http://r0k.us/graphics/kodak},
140+
title = "Kodak Lossless True Color Image Suite ({PhotoCD PCD0992})",
141+
author = "Eastman Kodak",
142+
url = "http://r0k.us/graphics/kodak",
160143
}
161144

162145
### Tecnick
@@ -166,9 +149,9 @@ here (511 MB):
166149
[https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip](https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip)
167150

168151
@inproceedings{tecnick,
169-
author = {N. Asuni and A. Giachetti},
170-
title = {{TESTIMAGES}: A large-scale archive for testing visual devices and basic image processing algorithms {(SAMPLING 1200 RGB set)}},
171-
year = {2014},
172-
booktitle = {{STAG}: Smart Tools and Apps for Graphics}
173-
url = {https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip},
152+
author = "N. Asuni and A. Giachetti",
153+
title = "{TESTIMAGES}: A large-scale archive for testing visual devices and basic image processing algorithms {(SAMPLING 1200 RGB set)}",
154+
year = "2014",
155+
booktitle = "{STAG}: Smart Tools and Apps for Graphics",
156+
url = "https://sourceforge.net/projects/testimages/files/OLD/OLD_SAMPLING/testimages.zip",
174157
}

0 commit comments

Comments
 (0)