|
12 | 12 | "\n",
|
13 | 13 | "The Laplace and Banana sources are described in:\n",
|
14 | 14 | "\n",
|
15 |
| - "\u003e \"Nonlinear Transform Coding\"\u003cbr /\u003e\n", |
16 |
| - "\u003e J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson, S. J. Hwang, G. Toderici\u003cbr /\u003e\n", |
17 |
| - "\u003e https://arxiv.org/abs/2007.03034\n", |
| 15 | + "> \"Nonlinear Transform Coding\"<br />\n", |
| 16 | + "> J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson, S. J. Hwang, G. Toderici<br />\n", |
| 17 | + "> https://arxiv.org/abs/2007.03034\n", |
18 | 18 | "\n",
|
19 | 19 | "The Sawbridge process is described in:\n",
|
20 | 20 | "\n",
|
21 |
| - "\u003e \"Neural Networks Optimally Compress the Sawbridge\"\u003cbr /\u003e\n", |
22 |
| - "\u003e A. B. Wagner, J. Ballé\u003cbr /\u003e\n", |
23 |
| - "\u003e https://arxiv.org/abs/2011.05065\n", |
| 21 | + "> \"Neural Networks Optimally Compress the Sawbridge\"<br />\n", |
| 22 | + "> A. B. Wagner, J. Ballé<br />\n", |
| 23 | + "> https://arxiv.org/abs/2011.05065\n", |
24 | 24 | "\n",
|
25 | 25 | "This notebook requires TFC v2 (`pip install tensorflow-compression==2.*`)\n"
|
26 | 26 | ]
|
27 | 27 | },
|
28 | 28 | {
|
29 | 29 | "cell_type": "code",
|
| 30 | + "execution_count": null, |
30 | 31 | "metadata": {
|
31 | 32 | "cellView": "form",
|
32 | 33 | "id": "wdA5NUZ-fSxG"
|
33 | 34 | },
|
| 35 | + "outputs": [], |
34 | 36 | "source": [
|
35 | 37 | "#@title Dependencies for Colab\n",
|
36 | 38 | "\n",
|
|
43 | 45 | "# Downloads the 'models' directory from Github.\n",
|
44 | 46 | "![[ -e /tfc ]] || git clone https://github.com/tensorflow/compression /tfc\n",
|
45 | 47 | "%cd /tfc/models\n"
|
46 |
| - ], |
47 |
| - "execution_count": null, |
48 |
| - "outputs": [] |
| 48 | + ] |
49 | 49 | },
|
50 | 50 | {
|
51 | 51 | "cell_type": "code",
|
|
322 | 322 | " # Estimate KLT from samples.\n",
|
323 | 323 | " eigv, error = estimate_klt(\n",
|
324 | 324 | " source, tf.constant(num_samples), tf.constant(latent_dims))\n",
|
325 |
| - " assert error \u003c tolerance, error.numpy()\n", |
| 325 | + " assert error < tolerance, error.numpy()\n", |
326 | 326 | " eigv = tf.cast(eigv, dtype)\n",
|
327 | 327 | "\n",
|
328 | 328 | " analysis = tf.keras.Sequential([\n",
|
|
417 | 417 | " \"\"\"Returns a learning rate scheduler function for the given configuration.\"\"\"\n",
|
418 | 418 | " def scheduler(epoch, lr):\n",
|
419 | 419 | " del lr # unused\n",
|
420 |
| - " if epoch \u003c warmup_epochs:\n", |
| 420 | + " if epoch < warmup_epochs:\n", |
421 | 421 | " return learning_rate * 10. ** (epoch - warmup_epochs)\n",
|
422 |
| - " if epoch \u003c 1/2 * epochs:\n", |
| 422 | + " if epoch < 1/2 * epochs:\n", |
423 | 423 | " return learning_rate\n",
|
424 |
| - " if epoch \u003c 3/4 * epochs:\n", |
| 424 | + " if epoch < 3/4 * epochs:\n", |
425 | 425 | " return learning_rate * 1e-1\n",
|
426 |
| - " if epoch \u003c 7/8 * epochs:\n", |
| 426 | + " if epoch < 7/8 * epochs:\n", |
427 | 427 | " return learning_rate * 1e-2\n",
|
428 | 428 | " return learning_rate * 1e-3\n",
|
429 | 429 | " return scheduler\n",
|
|
456 | 456 | "def get_alpha_scheduler(epochs):\n",
|
457 | 457 | " \"\"\"Returns an alpha scheduler function for the given configuration.\"\"\"\n",
|
458 | 458 | " def scheduler(epoch):\n",
|
459 |
| - " if epoch \u003c 1/4 * epochs:\n", |
| 459 | + " if epoch < 1/4 * epochs:\n", |
460 | 460 | " return 3. * (epoch + 1) / (epochs/4 + 1)\n",
|
461 | 461 | " return None\n",
|
462 | 462 | " return scheduler\n"
|
|
1160 | 1160 | " callbacks=tf.keras.callbacks.CallbackList(callback_list, model=model),\n",
|
1161 | 1161 | ")\n"
|
1162 | 1162 | ]
|
1163 |
| - }, |
1164 |
| - { |
1165 |
| - "cell_type": "code", |
1166 |
| - "execution_count": null, |
1167 |
| - "metadata": { |
1168 |
| - "id": "TmK8AWxQRl6E" |
1169 |
| - }, |
1170 |
| - "outputs": [], |
1171 |
| - "source": [ |
1172 |
| - "" |
1173 |
| - ] |
1174 | 1163 | }
|
1175 | 1164 | ],
|
1176 | 1165 | "metadata": {
|
|
1180 | 1169 | "cVgn8T6pySgP",
|
1181 | 1170 | "KmoKt709KFAv"
|
1182 | 1171 | ],
|
1183 |
| - "last_runtime": { |
1184 |
| - "build_target": "", |
1185 |
| - "kind": "local" |
1186 |
| - }, |
1187 |
| - "name": "toy_sources.ipynb" |
| 1172 | + "name": "toy_sources.ipynb", |
| 1173 | + "toc_visible": true |
1188 | 1174 | },
|
1189 | 1175 | "kernelspec": {
|
1190 | 1176 | "display_name": "Python 3",
|
|
0 commit comments