@@ -78,7 +78,7 @@ convolution algorithm. This is probably because cuDNN".
78
78
79
79
In this case, try setting ` TF_FORCE_GPU_ALLOW_GROWTH=true ` , e.g.:
80
80
``` bash
81
- TF_FORCE_GPU_ALLOW_GROWTH=true python train.py ...
81
+ TF_FORCE_GPU_ALLOW_GROWTH=true python -m hific.train ...
82
82
```
83
83
84
84
#### Note on Memory Consumption
@@ -107,16 +107,22 @@ needs to be adapted to a bigger dataset to obtain good results
107
107
For the paper, we initialize our GAN models from a MSE+LPIPS checkpoint. To
108
108
replicate this, first train a model for MSE + LPIPS only, and then use that as a
109
109
starting point:
110
+
110
111
``` bash
112
+ # Need to be in the models directory such that hific is a subdirectory.
113
+ cd models
114
+
111
115
# First train a model for MSE+LPIPS:
112
- python train.py --config mselpips --ckpt_dir ckpts/mse_lpips --num_steps 1M
113
- --tfds_dataset_name coco2014
116
+ python -m hific.train --config mselpips --ckpt_dir ckpts/mse_lpips \
117
+ --num_steps 1M --tfds_dataset_name coco2014
114
118
115
119
# Once that finishes, train a GAN model:
116
- python train.py --config hific --ckpt_dir ckpts/hific \
117
- --init_autoencoder_from_ckpt_dir ckpts/mselpips --num_steps 1M
120
+ python -m hific.train --config hific --ckpt_dir ckpts/hific \
121
+ --init_autoencoder_from_ckpt_dir ckpts/mselpips \
122
+ --num_steps 1M \
118
123
--tfds_dataset_name coco2014
119
124
```
125
+
120
126
Additional helpful arguments are ` --tfds_dataset_name ` ,
121
127
and ` --tfds_download_dir ` , see ` --help ` for more.
122
128
@@ -128,7 +134,7 @@ To test a trained model, use `evaluate.py` (it also supports the `--tfds_*`
128
134
flags):
129
135
130
136
``` bash
131
- python evaluate.py --config hific --ckpt_dir ckpts/hific --out_dir out/ \
137
+ python -m hific.evaluate --config hific --ckpt_dir ckpts/hific --out_dir out/ \
132
138
--tfds_dataset_name coco2014
133
139
```
134
140
0 commit comments