Skip to content

Commit 3f9c162

Browse files
author
The TensorFlow Datasets Authors
committed
Automated documentation update.
PiperOrigin-RevId: 631515758
1 parent ad13fe2 commit 3f9c162

9 files changed

+18
-18
lines changed

docs/catalog/d4rl_adroit_door.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_adroit_door" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_adroit_door&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_adroit_door" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_adroit_door.D4rlAdroitDoor`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_adroit_door/d4rl_adroit_door.py)

docs/catalog/d4rl_adroit_hammer.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_adroit_hammer" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_adroit_hammer&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_adroit_hammer" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_adroit_hammer.D4rlAdroitHammer`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_adroit_hammer/d4rl_adroit_hammer.py)

docs/catalog/d4rl_adroit_pen.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_adroit_pen" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_adroit_pen&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_adroit_pen" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -21,7 +21,7 @@ The datasets follow the [RLDS format](https://github.com/google-research/rlds)
2121
to represent steps and episodes.
2222

2323
* **Homepage**:
24-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
24+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2525

2626
* **Source code**:
2727
[`tfds.d4rl.d4rl_adroit_pen.D4rlAdroitPen`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_adroit_pen/d4rl_adroit_pen.py)

docs/catalog/d4rl_adroit_relocate.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_adroit_relocate" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_adroit_relocate&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_adroit_relocate" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_adroit_relocate.D4rlAdroitRelocate`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_adroit_relocate/d4rl_adroit_relocate.py)

docs/catalog/d4rl_antmaze.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_antmaze" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_antmaze&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_antmaze" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#antmaze
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_antmaze.D4rlAntmaze`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_antmaze/d4rl_antmaze.py)

docs/catalog/d4rl_mujoco_ant.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_mujoco_ant" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_mujoco_ant&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_mujoco_ant" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -30,7 +30,7 @@ to represent steps and episodes.
3030
https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym
3131

3232
* **Homepage**:
33-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
33+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
3434

3535
* **Source code**:
3636
[`tfds.d4rl.d4rl_mujoco_ant.D4rlMujocoAnt`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_mujoco_ant/d4rl_mujoco_ant.py)

docs/catalog/d4rl_mujoco_halfcheetah.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_mujoco_halfcheetah" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_mujoco_halfcheetah&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_mujoco_halfcheetah" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_mujoco_halfcheetah.D4rlMujocoHalfcheetah`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_mujoco_halfcheetah/d4rl_mujoco_halfcheetah.py)

docs/catalog/d4rl_mujoco_hopper.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_mujoco_hopper" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_mujoco_hopper&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_mujoco_hopper" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_mujoco_hopper.D4rlMujocoHopper`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_mujoco_hopper/d4rl_mujoco_hopper.py)

docs/catalog/d4rl_mujoco_walker2d.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
<meta itemprop="name" content="d4rl_mujoco_walker2d" />
66
<meta itemprop="description" content="D4RL is an open-source benchmark for offline reinforcement learning. It provides&#10;standardized environments and datasets for training and benchmarking algorithms.&#10;&#10;The datasets follow the [RLDS format](https://github.com/google-research/rlds)&#10;to represent steps and episodes.&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;d4rl_mujoco_walker2d&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
77
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/d4rl_mujoco_walker2d" />
8-
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl/home" />
8+
<meta itemprop="sameAs" content="https://sites.google.com/view/d4rl-anonymous" />
99
<meta itemprop="citation" content="@misc{fu2020d4rl,&#10; title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},&#10; author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},&#10; year={2020},&#10; eprint={2004.07219},&#10; archivePrefix={arXiv},&#10; primaryClass={cs.LG}&#10;}" />
1010
</div>
1111

@@ -24,7 +24,7 @@ to represent steps and episodes.
2424
https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym
2525

2626
* **Homepage**:
27-
[https://sites.google.com/view/d4rl/home](https://sites.google.com/view/d4rl/home)
27+
[https://sites.google.com/view/d4rl-anonymous](https://sites.google.com/view/d4rl-anonymous)
2828

2929
* **Source code**:
3030
[`tfds.d4rl.d4rl_mujoco_walker2d.D4rlMujocoWalker2d`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/d4rl/d4rl_mujoco_walker2d/d4rl_mujoco_walker2d.py)

0 commit comments

Comments
 (0)