@@ -91,6 +91,19 @@ <h3>Ubuntu</h3>
91
91
92
92
< section >
93
93
< h3 > macOS</ h3 >
94
+ < aside class ="note ">
95
+ < strong > Note:</ strong >
96
+ < span >
97
+ For users of Apple M1 computers, to get native performance, you'll want
98
+ to follow the instructions found
99
+ < a href ="https://developer.apple.com/metal/tensorflow-plugin/ "
100
+ class ="external "> here</ a > .
101
+ Conda has shown to have the smoothest install. Some TensorFlow
102
+ binaries (specifically, ones with custom C++ extensions like TensorFlow
103
+ Decision Forests, object detection, and TFX) are not compiled against M1
104
+ targets. If you need those libraries, you will have to use TensorFlow
105
+ with x86 emulation and Rosetta.</ span >
106
+ </ aside >
94
107
< p > Install using the < a href ="https://brew.sh/ " class ="external "> Homebrew</ a > package manager:</ p >
95
108
< pre class ="prettyprint lang-bsh ">
96
109
< code class ="devsite-terminal "> /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"</ code >
@@ -143,7 +156,52 @@ <h2>2. Create a virtual environment (recommended)</h2>
143
156
144
157
< div class ="ds-selector-tabs ">
145
158
< section >
146
- < h3 > Ubuntu / macOS</ h3 >
159
+ < h3 > Ubuntu</ h3 >
160
+ < p >
161
+ Create a new virtual environment by choosing a Python interpreter and making a
162
+ < code > ./venv</ code > directory to hold it:
163
+ </ p >
164
+ < pre class ="devsite-terminal devsite-click-to-copy "> python3 -m venv --system-site-packages < var > ./venv</ var > </ pre >
165
+ < p >
166
+ Activate the virtual environment using a shell-specific command:
167
+ </ p >
168
+ < pre class ="devsite-terminal prettyprint lang-bsh "> source < var > ./venv</ var > /bin/activate # sh, bash, or zsh</ pre >
169
+ < pre class ="devsite-terminal prettyprint lang-bsh "> . < var > ./venv</ var > /bin/activate.fish # fish</ pre >
170
+ < pre class ="devsite-terminal prettyprint lang-bsh "> source < var > ./venv</ var > /bin/activate.csh # csh or tcsh</ pre >
171
+
172
+ < p >
173
+ When the virtual environment is active, your shell prompt is prefixed with < code > (venv)</ code > .
174
+ </ p >
175
+ < p >
176
+ Install packages within a virtual environment without affecting the host system
177
+ setup. Start by upgrading < code > pip</ code > :
178
+ </ p >
179
+ < pre class ="prettyprint lang-bsh ">
180
+ < code class ="devsite-terminal tfo-terminal-venv "> pip install --upgrade pip</ code >
181
+
182
+ < code class ="devsite-terminal tfo-terminal-venv "> pip list # show packages installed within the virtual environment</ code >
183
+ </ pre >
184
+ < p >
185
+ And to exit the virtual environment later:
186
+ </ p >
187
+ < pre class ="devsite-terminal tfo-terminal-venv prettyprint lang-bsh "> deactivate # don't exit until you're done using TensorFlow</ pre >
188
+ </ section >
189
+
190
+ < section >
191
+ < h3 > macOS</ h3 >
192
+ < aside class ="note ">
193
+ < strong > Note:</ strong >
194
+ < span >
195
+ For users of Apple M1 computers, to get native performance, you'll want
196
+ to follow the instructions found
197
+ < a href ="https://developer.apple.com/metal/tensorflow-plugin/ "
198
+ class ="external "> here</ a > .
199
+ Conda has shown to have the smoothest install. Some TensorFlow
200
+ binaries (specifically, ones with custom C++ extensions like TensorFlow
201
+ Decision Forests, object detection, and TFX) are not compiled against M1
202
+ targets. If you need those libraries, you will have to use TensorFlow
203
+ with x86 emulation and Rosetta.</ span >
204
+ </ aside >
147
205
< p >
148
206
Create a new virtual environment by choosing a Python interpreter and making a
149
207
< code > ./venv</ code > directory to hold it:
0 commit comments