@@ -26,9 +26,10 @@ step-by-step instructions.
26
26
for more information about this collaboration.
27
27
28
28
``` bash
29
- conda install -c conda-forge cudatoolkit=11.2.2 cudnn=8.1.0
30
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/
31
- python3 -m pip install tensorflow
29
+ conda install -c conda-forge cudatoolkit=11.8.0
30
+ python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.12.*
31
+ CUDNN_PATH=$( dirname $( python -c " import nvidia.cudnn;print(nvidia.cudnn.__file__)" ) )
32
+ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/:$CUDNN_PATH /lib
32
33
# Verify install:
33
34
python3 -c " import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
34
35
```
@@ -72,9 +73,10 @@ step-by-step instructions.
72
73
for CUDA in WSL.
73
74
74
75
` ` ` bash
75
- conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
76
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/
77
- python3 -m pip install tensorflow
76
+ conda install -c conda-forge cudatoolkit=11.8.0
77
+ python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.12.*
78
+ CUDNN_PATH=$( dirname $( python -c " import nvidia.cudnn;print(nvidia.cudnn.__file__)" ) )
79
+ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/:$CUDNN_PATH /lib
78
80
# Verify install:
79
81
python3 -c " import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
80
82
` ` `
@@ -155,8 +157,8 @@ The following NVIDIA® software are only required for GPU support.
155
157
156
158
* [NVIDIA® GPU drivers](https://www.nvidia.com/drivers){:.external}
157
159
version 450.80.02 or higher.
158
- * [CUDA® Toolkit 11.2 ](https://developer.nvidia.com/cuda-toolkit-archive){:.external}.
159
- * [cuDNN SDK 8.1 .0](https://developer.nvidia.com/cudnn){:.external}.
160
+ * [CUDA® Toolkit 11.8 ](https://developer.nvidia.com/cuda-toolkit-archive){:.external}.
161
+ * [cuDNN SDK 8.6 .0](https://developer.nvidia.com/cudnn){:.external}.
160
162
* *(Optional)*
161
163
[TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html#trt_7){:.external}
162
164
to improve latency and throughput for inference.
@@ -233,17 +235,19 @@ The following NVIDIA® software are only required for GPU support.
233
235
nvidia-smi
234
236
` ` `
235
237
236
- Then install CUDA and cuDNN with conda.
238
+ Then install CUDA and cuDNN with conda and pip .
237
239
238
240
` ` ` bash
239
- conda install -c conda-forge cudatoolkit=11.2.2 cudnn=8.1.0
241
+ conda install -c conda-forge cudatoolkit=11.8.0
242
+ pip install nvidia-cudnn-cu11==8.6.0.163
240
243
` ` `
241
244
242
245
Configure the system paths. You can do it with the following command every time
243
246
you start a new terminal after activating your conda environment.
244
247
245
248
` ` ` bash
246
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/
249
+ CUDNN_PATH=$( dirname $( python -c " import nvidia.cudnn;print(nvidia.cudnn.__file__)" ) )
250
+ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/:$CUDNN_PATH /lib
247
251
` ` `
248
252
249
253
For your convenience it is recommended that you automate it with the following
@@ -252,7 +256,8 @@ The following NVIDIA® software are only required for GPU support.
252
256
253
257
` ` ` bash
254
258
mkdir -p $CONDA_PREFIX /etc/conda/activate.d
255
- echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/' > $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
259
+ CUDNN_PATH=$( dirname $( python -c " import nvidia.cudnn;print(nvidia.cudnn.__file__)" ) )
260
+ echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' > $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
256
261
` ` `
257
262
258
263
# ## 5. Install TensorFlow
@@ -271,7 +276,7 @@ The following NVIDIA® software are only required for GPU support.
271
276
PyPI.
272
277
273
278
```bash
274
- pip install tensorflow==2.11 .*
279
+ pip install tensorflow==2.12 .*
275
280
```
276
281
277
282
### 6. Verify install
@@ -312,7 +317,7 @@ The following NVIDIA® software are only required for GPU support.
312
317
conda install -c nvidia cuda-nvcc=11.3.58
313
318
# Configure the XLA cuda directory
314
319
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
315
- printf ' export LD_LIBRARY_PATH= $LD_LIBRARY_PATH : $CONDA_PREFIX /lib/ \n export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX /lib/\n ' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
320
+ printf ' export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX /lib/\n ' > > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
316
321
source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
317
322
# Copy libdevice file to the required path
318
323
mkdir -p $CONDA_PREFIX/lib/nvvm/libdevice
@@ -598,17 +603,19 @@ The following NVIDIA® software are only required for GPU support.
598
603
nvidia-smi
599
604
```
600
605
601
- Then install CUDA and cuDNN with conda.
606
+ Then install CUDA and cuDNN with conda and pip .
602
607
603
608
```bash
604
- conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
609
+ conda install -c conda-forge cudatoolkit=11.8.0
610
+ pip install nvidia-cudnn-cu11==8.6.0.163
605
611
```
606
612
607
613
Configure the system paths. You can do it with following command everytime
608
614
your start a new terminal after activating your conda environment.
609
615
610
616
```bash
611
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/
617
+ CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))
618
+ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib
612
619
```
613
620
614
621
For your convenience it is recommended that you automate it with the following
@@ -617,7 +624,8 @@ The following NVIDIA® software are only required for GPU support.
617
624
618
625
```bash
619
626
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
620
- echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
627
+ CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))
628
+ echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/:$CUDNN_PATH /lib' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
621
629
```
622
630
623
631
### 5. Install TensorFlow
@@ -636,7 +644,7 @@ The following NVIDIA® software are only required for GPU support.
636
644
PyPI.
637
645
638
646
` ` ` bash
639
- pip install tensorflow
647
+ pip install tensorflow==2.12. *
640
648
` ` `
641
649
642
650
# ## 6. Verify install
@@ -667,73 +675,57 @@ The value you specify depends on your Python version.
667
675
< table>
668
676
< tr><th> Version< /th><th> URL< /th></tr>
669
677
< tr class=" alt" ><td colspan=" 2" > Linux< /td></tr>
670
- < tr>
671
- < td> Python 3.7 GPU& nbsp; support< /td>
672
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
673
- < /tr>
674
- < tr>
675
- < td> Python 3.7 CPU-only< /td>
676
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
677
- < /tr>
678
678
< tr>
679
679
< td> Python 3.8 GPU& nbsp; support< /td>
680
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu -2.11 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
680
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow -2.12 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
681
681
< /tr>
682
682
< tr>
683
683
< td> Python 3.8 CPU-only< /td>
684
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
684
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.12 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
685
685
< /tr>
686
686
< tr>
687
687
< td> Python 3.9 GPU& nbsp; support< /td>
688
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu -2.11 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
688
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow -2.12 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
689
689
< /tr>
690
690
< tr>
691
691
< td> Python 3.9 CPU-only< /td>
692
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
692
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.12 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
693
693
< /tr>
694
694
< tr>
695
695
< td> Python 3.10 GPU& nbsp; support< /td>
696
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu -2.11 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
696
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow -2.12 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
697
697
< /tr>
698
698
< tr>
699
699
< td> Python 3.10 CPU-only< /td>
700
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
700
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.12 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
701
701
< /tr>
702
702
703
703
< tr class=" alt" ><td colspan=" 2" > macOS (CPU-only)< /td></tr>
704
- < tr>
705
- < td> Python 3.7< /td>
706
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11.0-cp37-cp37m-macosx_10_14_x86_64.whl< /td>
707
- < /tr>
708
704
< tr>
709
705
< td> Python 3.8< /td>
710
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11 .0-cp38-cp38-macosx_10_14_x86_64 .whl< /td>
706
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.12 .0-cp38-cp38-macosx_10_15_x86_64 .whl< /td>
711
707
< /tr>
712
708
< tr>
713
709
< td> Python 3.9< /td>
714
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11 .0-cp39-cp39-macosx_10_14_x86_64 .whl< /td>
710
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.12 .0-cp39-cp39-macosx_10_15_x86_64 .whl< /td>
715
711
< /tr>
716
712
< tr>
717
713
< td> Python 3.10< /td>
718
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11 .0-cp310-cp310-macosx_10_14_x86_64 .whl< /td>
714
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.12 .0-cp310-cp310-macosx_10_15_x86_64 .whl< /td>
719
715
< /tr>
720
716
721
717
< tr class=" alt" ><td colspan=" 2" > Windows< /td></tr>
722
- < tr>
723
- < td> Python 3.7 CPU-only< /td>
724
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11.0-cp37-cp37m-win_amd64.whl< /td>
725
- < /tr>
726
718
< tr>
727
719
< td> Python 3.8 CPU-only< /td>
728
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11 .0-cp38-cp38-win_amd64.whl< /td>
720
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.12 .0-cp38-cp38-win_amd64.whl< /td>
729
721
< /tr>
730
722
< tr>
731
723
< td> Python 3.9 CPU-only< /td>
732
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11 .0-cp39-cp39-win_amd64.whl< /td>
724
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.12 .0-cp39-cp39-win_amd64.whl< /td>
733
725
< /tr>
734
726
< tr>
735
727
< td> Python 3.10 CPU-only< /td>
736
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11 .0-cp310-cp310-win_amd64.whl< /td>
728
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.12 .0-cp310-cp310-win_amd64.whl< /td>
737
729
< /tr>
738
730
739
731
< /table>
0 commit comments