@@ -26,9 +26,12 @@ step-by-step instructions.
26
26
for more information about this collaboration.
27
27
28
28
``` bash
29
- conda install -c conda-forge cudatoolkit=11.2.2 cudnn=8.1.0
30
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/
31
- python3 -m pip install tensorflow
29
+ conda install -c conda-forge cudatoolkit=11.8.0
30
+ python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.12.*
31
+ mkdir -p $CONDA_PREFIX /etc/conda/activate.d
32
+ echo ' CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
33
+ echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
34
+ source $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
32
35
# Verify install:
33
36
python3 -c " import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
34
37
```
@@ -72,9 +75,12 @@ step-by-step instructions.
72
75
for CUDA in WSL.
73
76
74
77
` ` ` bash
75
- conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
76
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/
77
- python3 -m pip install tensorflow
78
+ conda install -c conda-forge cudatoolkit=11.8.0
79
+ python3 -m pip install nvidia-cudnn-cu11==8.6.0.163 tensorflow==2.12.*
80
+ mkdir -p $CONDA_PREFIX /etc/conda/activate.d
81
+ echo ' CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
82
+ echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
83
+ source $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
78
84
# Verify install:
79
85
python3 -c " import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
80
86
` ` `
@@ -145,7 +151,7 @@ Note: GPU support is available for Ubuntu and Windows with CUDA®-enabled cards.
145
151
## Software requirements
146
152
147
153
* Python 3.8–3.11
148
- * pip version 19.0 or higher for Linux (requires `manylinux2010 ` support) and
154
+ * pip version 19.0 or higher for Linux (requires `manylinux2014 ` support) and
149
155
Windows. pip version 20.3 or higher for macOS.
150
156
* Windows Native Requires
151
157
[Microsoft Visual C++ Redistributable for Visual Studio 2015, 2017 and 2019](https://support.microsoft.com/help/2977003/the-latest-supported-visual-c-downloads){:.external}
@@ -155,8 +161,8 @@ The following NVIDIA® software are only required for GPU support.
155
161
156
162
* [NVIDIA® GPU drivers](https://www.nvidia.com/drivers){:.external}
157
163
version 450.80.02 or higher.
158
- * [CUDA® Toolkit 11.2 ](https://developer.nvidia.com/cuda-toolkit-archive){:.external}.
159
- * [cuDNN SDK 8.1 .0](https://developer.nvidia.com/cudnn){:.external}.
164
+ * [CUDA® Toolkit 11.8 ](https://developer.nvidia.com/cuda-toolkit-archive){:.external}.
165
+ * [cuDNN SDK 8.6 .0](https://developer.nvidia.com/cudnn){:.external}.
160
166
* *(Optional)*
161
167
[TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html#trt_7){:.external}
162
168
to improve latency and throughput for inference.
@@ -233,17 +239,19 @@ The following NVIDIA® software are only required for GPU support.
233
239
nvidia-smi
234
240
` ` `
235
241
236
- Then install CUDA and cuDNN with conda.
242
+ Then install CUDA and cuDNN with conda and pip .
237
243
238
244
` ` ` bash
239
- conda install -c conda-forge cudatoolkit=11.2.2 cudnn=8.1.0
245
+ conda install -c conda-forge cudatoolkit=11.8.0
246
+ pip install nvidia-cudnn-cu11==8.6.0.163
240
247
` ` `
241
248
242
249
Configure the system paths. You can do it with the following command every time
243
250
you start a new terminal after activating your conda environment.
244
251
245
252
` ` ` bash
246
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/
253
+ CUDNN_PATH=$( dirname $( python -c " import nvidia.cudnn;print(nvidia.cudnn.__file__)" ) )
254
+ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/:$CUDNN_PATH /lib
247
255
` ` `
248
256
249
257
For your convenience it is recommended that you automate it with the following
@@ -252,7 +260,8 @@ The following NVIDIA® software are only required for GPU support.
252
260
253
261
` ` ` bash
254
262
mkdir -p $CONDA_PREFIX /etc/conda/activate.d
255
- echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/' > $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
263
+ echo ' CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))' >> $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
264
+ echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib' >> $CONDA_PREFIX /etc/conda/activate.d/env_vars.sh
256
265
` ` `
257
266
258
267
# ## 5. Install TensorFlow
@@ -271,7 +280,7 @@ The following NVIDIA® software are only required for GPU support.
271
280
PyPI.
272
281
273
282
```bash
274
- pip install tensorflow==2.11 .*
283
+ pip install tensorflow==2.12 .*
275
284
```
276
285
277
286
### 6. Verify install
@@ -312,7 +321,7 @@ The following NVIDIA® software are only required for GPU support.
312
321
conda install -c nvidia cuda-nvcc=11.3.58
313
322
# Configure the XLA cuda directory
314
323
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
315
- printf ' export LD_LIBRARY_PATH= $LD_LIBRARY_PATH : $CONDA_PREFIX /lib/ \n export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX /lib/\n ' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
324
+ printf ' export XLA_FLAGS=--xla_gpu_cuda_data_dir=$CONDA_PREFIX /lib/\n ' > > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
316
325
source $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
317
326
# Copy libdevice file to the required path
318
327
mkdir -p $CONDA_PREFIX/lib/nvvm/libdevice
@@ -598,17 +607,19 @@ The following NVIDIA® software are only required for GPU support.
598
607
nvidia-smi
599
608
```
600
609
601
- Then install CUDA and cuDNN with conda.
610
+ Then install CUDA and cuDNN with conda and pip .
602
611
603
612
```bash
604
- conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
613
+ conda install -c conda-forge cudatoolkit=11.8.0
614
+ pip install nvidia-cudnn-cu11==8.6.0.163
605
615
```
606
616
607
617
Configure the system paths. You can do it with following command everytime
608
618
your start a new terminal after activating your conda environment.
609
619
610
620
```bash
611
- export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/
621
+ CUDNN_PATH=$(dirname $(python -c "import nvidia.cudnn;print(nvidia.cudnn.__file__)"))
622
+ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/:$CUDNN_PATH/lib
612
623
```
613
624
614
625
For your convenience it is recommended that you automate it with the following
@@ -617,7 +628,8 @@ The following NVIDIA® software are only required for GPU support.
617
628
618
629
```bash
619
630
mkdir -p $CONDA_PREFIX/etc/conda/activate.d
620
- echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/' > $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
631
+ echo ' CUDNN_PATH=$( dirname $( python -c " import nvidia.cudnn;print(nvidia.cudnn.__file__)" ) ) ' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
632
+ echo ' export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :$CONDA_PREFIX /lib/:$CUDNN_PATH /lib' >> $CONDA_PREFIX/etc/conda/activate.d/env_vars.sh
621
633
```
622
634
623
635
### 5. Install TensorFlow
@@ -636,7 +648,7 @@ The following NVIDIA® software are only required for GPU support.
636
648
PyPI.
637
649
638
650
` ` ` bash
639
- pip install tensorflow
651
+ pip install tensorflow==2.12. *
640
652
` ` `
641
653
642
654
# ## 6. Verify install
@@ -667,73 +679,57 @@ The value you specify depends on your Python version.
667
679
< table>
668
680
< tr><th> Version< /th><th> URL< /th></tr>
669
681
< tr class=" alt" ><td colspan=" 2" > Linux< /td></tr>
670
- < tr>
671
- < td> Python 3.7 GPU& nbsp; support< /td>
672
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
673
- < /tr>
674
- < tr>
675
- < td> Python 3.7 CPU-only< /td>
676
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
677
- < /tr>
678
682
< tr>
679
683
< td> Python 3.8 GPU& nbsp; support< /td>
680
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu -2.11 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
684
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow -2.12 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
681
685
< /tr>
682
686
< tr>
683
687
< td> Python 3.8 CPU-only< /td>
684
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
688
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.12 .0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
685
689
< /tr>
686
690
< tr>
687
691
< td> Python 3.9 GPU& nbsp; support< /td>
688
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu -2.11 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
692
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow -2.12 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
689
693
< /tr>
690
694
< tr>
691
695
< td> Python 3.9 CPU-only< /td>
692
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
696
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.12 .0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
693
697
< /tr>
694
698
< tr>
695
699
< td> Python 3.10 GPU& nbsp; support< /td>
696
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu -2.11 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
700
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow -2.12 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
697
701
< /tr>
698
702
< tr>
699
703
< td> Python 3.10 CPU-only< /td>
700
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.11 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
704
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.12 .0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl< /td>
701
705
< /tr>
702
706
703
707
< tr class=" alt" ><td colspan=" 2" > macOS (CPU-only)< /td></tr>
704
- < tr>
705
- < td> Python 3.7< /td>
706
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11.0-cp37-cp37m-macosx_10_14_x86_64.whl< /td>
707
- < /tr>
708
708
< tr>
709
709
< td> Python 3.8< /td>
710
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11 .0-cp38-cp38-macosx_10_14_x86_64 .whl< /td>
710
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.12 .0-cp38-cp38-macosx_10_15_x86_64 .whl< /td>
711
711
< /tr>
712
712
< tr>
713
713
< td> Python 3.9< /td>
714
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11 .0-cp39-cp39-macosx_10_14_x86_64 .whl< /td>
714
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.12 .0-cp39-cp39-macosx_10_15_x86_64 .whl< /td>
715
715
< /tr>
716
716
< tr>
717
717
< td> Python 3.10< /td>
718
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.11 .0-cp310-cp310-macosx_10_14_x86_64 .whl< /td>
718
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.12 .0-cp310-cp310-macosx_10_15_x86_64 .whl< /td>
719
719
< /tr>
720
720
721
721
< tr class=" alt" ><td colspan=" 2" > Windows< /td></tr>
722
- < tr>
723
- < td> Python 3.7 CPU-only< /td>
724
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11.0-cp37-cp37m-win_amd64.whl< /td>
725
- < /tr>
726
722
< tr>
727
723
< td> Python 3.8 CPU-only< /td>
728
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11 .0-cp38-cp38-win_amd64.whl< /td>
724
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.12 .0-cp38-cp38-win_amd64.whl< /td>
729
725
< /tr>
730
726
< tr>
731
727
< td> Python 3.9 CPU-only< /td>
732
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11 .0-cp39-cp39-win_amd64.whl< /td>
728
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.12 .0-cp39-cp39-win_amd64.whl< /td>
733
729
< /tr>
734
730
< tr>
735
731
< td> Python 3.10 CPU-only< /td>
736
- < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.11 .0-cp310-cp310-win_amd64.whl< /td>
732
+ < td class=" devsite-click-to-copy" > https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.12 .0-cp310-cp310-win_amd64.whl< /td>
737
733
< /tr>
738
734
739
735
< /table>
0 commit comments