|
1 | 1 | # EfficientDet |
| 2 | +[](https://arxiv.org/abs/1911.09070) |
| 3 | +[](https://colab.sandbox.google.com/github/google/automl/blob/master/efficientdet/tutorial.ipynb) |
| 4 | +[](https://tfhub.dev/s?network-architecture=efficientdet) |
| 5 | + |
| 6 | + |
2 | 7 |
|
3 | 8 | [1] Mingxing Tan, Ruoming Pang, Quoc V. Le. EfficientDet: Scalable and Efficient Object Detection. CVPR 2020. |
4 | 9 | Arxiv link: https://arxiv.org/abs/1911.09070 |
5 | 10 |
|
6 | 11 | Updates: |
7 | 12 |
|
| 13 | + - May10/2021: Added EfficientDet-lite checkpoints (by Yuqi and TFLite team) |
8 | 14 | - Mar25/2021: Added [Det-AdvProp](https://arxiv.org/abs/2103.13886) model checkpoints ([see this page](./Det-AdvProp.md)). |
9 | 15 | - Jul20/2020: Added keras/TF2 and new SOTA D7x: 55.1mAP with 153ms. |
10 | 16 | - Apr22/2020: Sped up end-to-end latency: D0 has up to >200 FPS throughput on Tesla V100. |
@@ -82,10 +88,21 @@ In addition, the following table includes a list of models trained with fixed 64 |
82 | 88 | | D5(640) [h5](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco640/efficientdet-d5-640.h5), [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco640/efficientdet-d5-640.tar.gz) | 46.6 | 26.6ms | |
83 | 89 | | D6(640) [h5](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco640/efficientdet-d6-640.h5), [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco640/efficientdet-d6-640.tar.gz) | 47.9 | 33.8ms | |
84 | 90 |
|
| 91 | +We have also provided a list of mobile-size lite models: |
| 92 | + |
| 93 | +| Model | mAP (float) | Quantized mAP (int8) | Prameters | Mobile latency | |
| 94 | +| ------ | :------: | :------: | :------: | :------: |:------: | |
| 95 | +| lite0, [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-lite0.tgz) | 26.41 | 26.10 | 4.3M | 36ms | |
| 96 | +| lite1, [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-lite1.tgz) | 31.50 | 31.12 | 5.8M | 49ms | |
| 97 | +| lite2, [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-lite2.tgz) | 35.06 | 34.69 | 7.2M | 69ms | |
| 98 | +| lite3, [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-lite3.tgz) | 38.77 | 38.42 | 11M | 116ms | |
| 99 | +| lite3x, [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-lite3x..gz) | 42.64 | 41.87 | 12M | 208ms | |
| 100 | +| lite4, [ckpt](https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/efficientdet-lite4.tgz) | 43.18 | 42.83 | 20M | 260ms | |
85 | 101 |
|
86 | 102 |
|
87 | 103 | ## 3. Export SavedModel, frozen graph, tensort models, or tflite. |
88 | 104 |
|
| 105 | + |
89 | 106 | Run the following command line to export models: |
90 | 107 |
|
91 | 108 | !rm -rf savedmodeldir |
|
0 commit comments