|
| 1 | +# Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +# pylint: disable=missing-docstring |
| 16 | +"""Train a simple convnet with MultiHeadAttention layer on MNIST dataset |
| 17 | +and cluster it. |
| 18 | +""" |
| 19 | +import tensorflow as tf |
| 20 | +import tensorflow_model_optimization as tfmot |
| 21 | + |
| 22 | +import numpy as np |
| 23 | + |
| 24 | +NUMBER_OF_CLUSTERS = 3 |
| 25 | + |
| 26 | +# Load MNIST dataset |
| 27 | +mnist = tf.keras.datasets.mnist |
| 28 | +(train_images, train_labels), (test_images, test_labels) = mnist.load_data() |
| 29 | + |
| 30 | +# Normalize the input image so that each pixel value is between 0 to 1. |
| 31 | +train_images = train_images / 255.0 |
| 32 | +test_images = test_images / 255.0 |
| 33 | + |
| 34 | +# define model |
| 35 | +input = tf.keras.layers.Input(shape=(28, 28)) |
| 36 | +x = tf.keras.layers.MultiHeadAttention(num_heads=2, key_dim=16, name="mha")( |
| 37 | + query=input, value=input |
| 38 | +) |
| 39 | +x = tf.keras.layers.Flatten()(x) |
| 40 | +out = tf.keras.layers.Dense(10)(x) |
| 41 | +model = tf.keras.Model(inputs=input, outputs=out) |
| 42 | + |
| 43 | +# Train the digit classification model |
| 44 | +model.compile( |
| 45 | + optimizer="adam", |
| 46 | + loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
| 47 | + metrics=["accuracy"], |
| 48 | +) |
| 49 | + |
| 50 | +model.fit( |
| 51 | + train_images, train_labels, epochs=1, validation_split=0.1, |
| 52 | +) |
| 53 | + |
| 54 | +score = model.evaluate(test_images, test_labels, verbose=0) |
| 55 | +print('Model test loss:', score[0]) |
| 56 | +print('Model test accuracy:', score[1]) |
| 57 | + |
| 58 | +# Compute end step to finish pruning after 2 epochs. |
| 59 | +batch_size = 128 |
| 60 | +epochs = 1 |
| 61 | +validation_split = 0.1 # 10% of training set will be used for validation set. |
| 62 | + |
| 63 | +# Define model for clustering |
| 64 | +cluster_weights = tfmot.clustering.keras.cluster_weights |
| 65 | +CentroidInitialization = tfmot.clustering.keras.CentroidInitialization |
| 66 | + |
| 67 | +clustering_params = { |
| 68 | + "number_of_clusters": NUMBER_OF_CLUSTERS, |
| 69 | + "cluster_centroids_init": CentroidInitialization.KMEANS_PLUS_PLUS, |
| 70 | +} |
| 71 | +model_for_clustering = cluster_weights(model, **clustering_params) |
| 72 | + |
| 73 | +# `cluster_weights` requires a recompile. |
| 74 | +model_for_clustering.compile( |
| 75 | + optimizer="adam", |
| 76 | + loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
| 77 | + metrics=["accuracy"], |
| 78 | +) |
| 79 | + |
| 80 | +model_for_clustering.fit( |
| 81 | + train_images, |
| 82 | + train_labels, |
| 83 | + batch_size=batch_size, |
| 84 | + epochs=epochs, |
| 85 | + validation_split=validation_split, |
| 86 | +) |
| 87 | + |
| 88 | +score = model_for_clustering.evaluate(test_images, test_labels, verbose=0) |
| 89 | +print('Clustered model test loss:', score[0]) |
| 90 | +print('Clustered model test accuracy:', score[1]) |
| 91 | + |
| 92 | +# Strip clustering from the model |
| 93 | +clustered_model = tfmot.clustering.keras.strip_clustering(model_for_clustering) |
| 94 | +clustered_model.compile( |
| 95 | + loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
| 96 | + optimizer='adam', |
| 97 | + metrics=['accuracy']) |
| 98 | + |
| 99 | +score = clustered_model.evaluate(test_images, test_labels, verbose=0) |
| 100 | +print('Stripped clustered model test loss:', score[0]) |
| 101 | +print('Stripped clustered model test accuracy:', score[1]) |
| 102 | + |
| 103 | +# Check that numbers of weights for MHA layer is the given number of clusters. |
| 104 | +mha_weights = list(filter(lambda x: 'mha' in x.name and 'kernel' in x.name, clustered_model.weights)) |
| 105 | +for x in mha_weights: |
| 106 | + assert len(np.unique(x.numpy())) == NUMBER_OF_CLUSTERS |
0 commit comments