1
1
# Trim insignificant weights
2
2
3
- <sub >Maintained by TensorFlow Model Optimization</sub >
4
-
5
3
This document provides an overview on model pruning to help you determine how it
6
4
fits with your use case.
7
5
@@ -11,6 +9,8 @@ fits with your use case.
11
9
[ pruning comprehensive guide] ( comprehensive_guide.ipynb ) .
12
10
* To explore the application of pruning for on-device inference, see the
13
11
[ Pruning for on-device inference with XNNPACK] ( pruning_for_on_device_inference.ipynb ) .
12
+ * To see an example of structural pruning, run the tutorial
13
+ [ Structural pruning with 2 by 4 sparsity] ( pruning_with_sparsity_2_by_4.ipynb ) .
14
14
15
15
## Overview
16
16
@@ -50,14 +50,18 @@ It is on our roadmap to add support in the following areas:
50
50
<tr>
51
51
<th>Model</th>
52
52
<th>Non-sparse Top-1 Accuracy </th>
53
- <th>Sparse Accuracy </th>
54
- <th>Sparsity </th>
53
+ <th>Random Sparse Accuracy </th>
54
+ <th>Random Sparsity </th>
55
+ <th>Structured Sparse Accuracy</th>
56
+ <th>Structured Sparsity </th>
55
57
</tr>
56
58
<tr>
57
59
<td rowspan=3>InceptionV3</td>
58
60
<td rowspan=3>78.1%</td>
59
61
<td>78.0%</td>
60
62
<td>50%</td>
63
+ <td>75.8%</td>
64
+ <td>2 by 4</td>
61
65
</tr>
62
66
<tr>
63
67
<td>76.1%</td><td>75%</td>
@@ -66,7 +70,10 @@ It is on our roadmap to add support in the following areas:
66
70
<td>74.6%</td><td>87.5%</td>
67
71
</tr>
68
72
<tr>
69
- <td>MobilenetV1 224</td><td>71.04%</td><td>70.84%</td><td>50%</td>
73
+ <td>MobilenetV1 224</td><td>71.04%</td><td>70.84%</td><td>50%</td><td>67.35%</td><td>2 by 4</td>
74
+ </tr>
75
+ <tr>
76
+ <td>MobilenetV2 224</td><td>71.77%</td><td>69.64%</td><td>50%</td><td>66.75%</td><td>2 by 4</td>
70
77
</tr>
71
78
</table >
72
79
</figure >
@@ -113,6 +120,29 @@ The models were tested on Imagenet.
113
120
The models use WMT16 German and English dataset with news-test2013 as the dev
114
121
set and news-test2015 as the test set.
115
122
123
+ ### Keyword spotting model
124
+
125
+ DS-CNN-L is a keyword spotting model created for edge devices. It can be found
126
+ in ARM software's
127
+ [ examples repository] ( https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m ) .
128
+
129
+ <figure >
130
+ <table >
131
+ <tr>
132
+ <th>Model</th>
133
+ <th>Non-sparse Accuracy</th>
134
+ <th>Structured Sparse Accuracy (2 by 4 pattern)</th>
135
+ <th>Random Sparse Accuracy (target sparsity 50%)</th>
136
+ </tr>
137
+ <tr>
138
+ <td>DS-CNN-L</td>
139
+ <td>95.23</td>
140
+ <td>94.33</td>
141
+ <td>94.84</td>
142
+ </tr>
143
+ </table >
144
+ </figure >
145
+
116
146
## Examples
117
147
118
148
In addition to the [ Prune with Keras] ( pruning_with_keras.ipynb )
0 commit comments