11# Trim insignificant weights
22
3- <sub >Maintained by TensorFlow Model Optimization</sub >
4-
53This document provides an overview on model pruning to help you determine how it
64fits with your use case.
75
@@ -11,6 +9,8 @@ fits with your use case.
119 [ pruning comprehensive guide] ( comprehensive_guide.ipynb ) .
1210* To explore the application of pruning for on-device inference, see the
1311 [ Pruning for on-device inference with XNNPACK] ( pruning_for_on_device_inference.ipynb ) .
12+ * To see an example of structural pruning, run the tutorial
13+ [ Structural pruning with 2 by 4 sparsity] ( pruning_with_sparsity_2_by_4.ipynb ) .
1414
1515## Overview
1616
@@ -50,14 +50,18 @@ It is on our roadmap to add support in the following areas:
5050 <tr>
5151 <th>Model</th>
5252 <th>Non-sparse Top-1 Accuracy </th>
53- <th>Sparse Accuracy </th>
54- <th>Sparsity </th>
53+ <th>Random Sparse Accuracy </th>
54+ <th>Random Sparsity </th>
55+ <th>Structured Sparse Accuracy</th>
56+ <th>Structured Sparsity </th>
5557 </tr>
5658 <tr>
5759 <td rowspan=3>InceptionV3</td>
5860 <td rowspan=3>78.1%</td>
5961 <td>78.0%</td>
6062 <td>50%</td>
63+ <td>75.8%</td>
64+ <td>2 by 4</td>
6165 </tr>
6266 <tr>
6367 <td>76.1%</td><td>75%</td>
@@ -66,7 +70,10 @@ It is on our roadmap to add support in the following areas:
6670 <td>74.6%</td><td>87.5%</td>
6771 </tr>
6872 <tr>
69- <td>MobilenetV1 224</td><td>71.04%</td><td>70.84%</td><td>50%</td>
73+ <td>MobilenetV1 224</td><td>71.04%</td><td>70.84%</td><td>50%</td><td>67.35%</td><td>2 by 4</td>
74+ </tr>
75+ <tr>
76+ <td>MobilenetV2 224</td><td>71.77%</td><td>69.64%</td><td>50%</td><td>66.75%</td><td>2 by 4</td>
7077 </tr>
7178 </table >
7279</figure >
@@ -113,6 +120,29 @@ The models were tested on Imagenet.
113120The models use WMT16 German and English dataset with news-test2013 as the dev
114121set and news-test2015 as the test set.
115122
123+ ### Keyword spotting model
124+
125+ DS-CNN-L is a keyword spotting model created for edge devices. It can be found
126+ in ARM software's
127+ [ examples repository] ( https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m ) .
128+
129+ <figure >
130+ <table >
131+ <tr>
132+ <th>Model</th>
133+ <th>Non-sparse Accuracy</th>
134+ <th>Structured Sparse Accuracy (2 by 4 pattern)</th>
135+ <th>Random Sparse Accuracy (target sparsity 50%)</th>
136+ </tr>
137+ <tr>
138+ <td>DS-CNN-L</td>
139+ <td>95.23</td>
140+ <td>94.33</td>
141+ <td>94.84</td>
142+ </tr>
143+ </table >
144+ </figure >
145+
116146## Examples
117147
118148In addition to the [ Prune with Keras] ( pruning_with_keras.ipynb )
0 commit comments