@@ -38,7 +38,7 @@ Users can apply clustering with the following APIs:
3838 <th colspan="4">Clustered</th>
3939 </tr >
4040 <tr >
41- <th >Top-1 accuracy (%)</th >
41+ <th>Top-1 accuracy (%)</th>
4242 <th>Size of compressed .tflite (MB)</th>
4343 <th>Configuration</th>
4444 <th># of clusters</th>
@@ -47,37 +47,49 @@ Users can apply clustering with the following APIs:
4747 </tr >
4848 <tr >
4949 <td rowspan="3">MobileNetV1</td>
50- <td rowspan="3">71.02 </td>
51- <td rowspan="3">14.96 </td>
50+ <td rowspan="3">70.976 </td>
51+ <td rowspan="3">14.97 </td>
5252 </tr >
5353 <tr >
5454 <td>Selective (last 3 Conv2D layers)</td>
55- <td>256, 256, 32</td>
56- <td>70.62</td>
57- <td>8.42</td>
55+ <td>16, 16, 16</td>
56+ <td>70.294</td>
57+ <td>7.69</td>
58+ </tr >
59+ <tr >
60+ <td>Selective (last 3 Conv2D layers)</td>
61+ <td>32, 32, 32</td>
62+ <td>70.69</td>
63+ <td>8.22</td>
5864 </tr >
5965 <tr >
6066 <td>Full (all Conv2D layers)</td>
61- <td>64 </td>
62- <td>66.07 </td>
63- <td>2.98 </td>
67+ <td>32 </td>
68+ <td>69.4 </td>
69+ <td>4.43 </td>
6470 </tr >
6571 <tr >
6672 <td rowspan="3">MobileNetV2</td>
67- <td rowspan="3">72.29 </td>
68- <td rowspan="3">12.90 </td>
73+ <td rowspan="3">71.778 </td>
74+ <td rowspan="3">12.38 </td>
6975 </tr >
7076 <tr >
7177 <td>Selective (last 3 Conv2D layers)</td>
72- <td>256, 256, 32</td>
73- <td>72.31</td>
74- <td>7.00</td>
78+ <td>16, 16, 16</td>
79+ <td>70.742</td>
80+ <td>6.68</td>
81+ </tr >
82+ <tr >
83+ <td>Selective (last 3 Conv2D layers)</td>
84+ <td>32, 32, 32</td>
85+ <td>70.926</td>
86+ <td>7.03</td>
7587 </tr >
7688 <tr >
7789 <td >Full (all Conv2D layers)</td >
7890 <td >32</td >
79- <td >69.33 </td >
80- <td >2.60 </td >
91+ <td >69.744 </td >
92+ <td >4.05 </td >
8193 </tr >
8294</table >
8395
@@ -87,9 +99,9 @@ The models were trained and tested on ImageNet.
8799
88100<table >
89101 <tr >
90- <th rowspan=2 >Model</th>
91- <th colspan=2 >Original</th>
92- <th colspan=4 >Clustered</th>
102+ <th rowspan="2" >Model</th>
103+ <th colspan="2" >Original</th>
104+ <th colspan="4" >Clustered</th>
93105 </tr >
94106 <tr >
95107 <th>Top-1 accuracy (%)</th>
@@ -100,17 +112,25 @@ The models were trained and tested on ImageNet.
100112 <th>Size of compressed .tflite (MB)</th>
101113 </tr >
102114 <tr >
103- <td>DS-CNN-L</td>
104- <td>95.03</td>
105- <td>1.5</td>
106- <td>Full</td>
107- <td>32</td>
108- <td>94.71</td>
109- <td>0.3</td>
115+ <td rowspan="3">DS-CNN-L</td>
116+ <td rowspan="3">95.233</td>
117+ <td rowspan="3">1.46</td>
118+ </tr >
119+ <tr >
120+ <td >Full (all Conv2D layers)</td >
121+ <td >32</td >
122+ <td >95.09</td >
123+ <td >0.39</td >
124+ </tr >
125+ <tr >
126+ <td >Full (all Conv2D layers)</td >
127+ <td >8</td >
128+ <td >94.272</td >
129+ <td >0.27</td >
110130 </tr >
111131</table >
112132
113- The models were trained and tested on SpeechCommands v0.02.
133+ The model was trained and tested on SpeechCommands v0.02.
114134
115135NOTE: * Size of compressed .tflite* refers to the size of the zipped .tflite file obtained from the model from the following process:
1161361 . Serialize the Keras model into .h5 file
0 commit comments