|
| 1 | +# Copyright 2020 The TensorFlow Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +"""Numerical verification tests for QAT.""" |
| 16 | + |
| 17 | + |
| 18 | +import tempfile |
| 19 | + |
| 20 | +from absl.testing import parameterized |
| 21 | + |
| 22 | +import numpy as np |
| 23 | +import tensorflow as tf |
| 24 | + |
| 25 | +from tensorflow.python.keras import keras_parameterized |
| 26 | +from tensorflow_model_optimization.python.core.quantization.keras import quantize |
| 27 | +from tensorflow_model_optimization.python.core.quantization.keras import utils |
| 28 | + |
| 29 | + |
| 30 | +@keras_parameterized.run_all_keras_modes(always_skip_v1=True) |
| 31 | +class QuantizeNumericalTest(tf.test.TestCase, parameterized.TestCase): |
| 32 | + |
| 33 | + @staticmethod |
| 34 | + def _batch(dims, batch_size): |
| 35 | + if dims[0] is None: |
| 36 | + dims[0] = batch_size |
| 37 | + return dims |
| 38 | + |
| 39 | + def _create_test_data(self, model): |
| 40 | + x = np.random.randn( |
| 41 | + *self._batch(model.input.get_shape().as_list(), 1)).astype('float32') |
| 42 | + y = np.random.randn( |
| 43 | + *self._batch(model.output.get_shape().as_list(), 1)).astype('float32') |
| 44 | + |
| 45 | + return x, y |
| 46 | + |
| 47 | + @staticmethod |
| 48 | + def _execute_tflite(tflite_file, x_test, y_test): |
| 49 | + interpreter = tf.lite.Interpreter(model_path=tflite_file) |
| 50 | + interpreter.allocate_tensors() |
| 51 | + |
| 52 | + input_index = interpreter.get_input_details()[0]['index'] |
| 53 | + output_index = interpreter.get_output_details()[0]['index'] |
| 54 | + |
| 55 | + for x, _ in zip(x_test, y_test): |
| 56 | + x = x.reshape((1,) + x.shape) |
| 57 | + interpreter.set_tensor(input_index, x) |
| 58 | + interpreter.invoke() |
| 59 | + y_ = interpreter.get_tensor(output_index) |
| 60 | + |
| 61 | + return y_ |
| 62 | + |
| 63 | + def _get_single_conv_model(self): |
| 64 | + i = tf.keras.Input(shape=(32, 32, 3)) |
| 65 | + x = tf.keras.layers.Conv2D(2, kernel_size=(3, 3), strides=(2, 2))(i) |
| 66 | + return tf.keras.Model(i, x) |
| 67 | + |
| 68 | + def _get_single_dense_model(self): |
| 69 | + i = tf.keras.Input(shape=(5,)) |
| 70 | + x = tf.keras.layers.Dense(3)(i) |
| 71 | + return tf.keras.Model(i, x) |
| 72 | + |
| 73 | + def _get_single_conv_relu_model(self): |
| 74 | + i = tf.keras.Input(shape=(6, 6, 3)) |
| 75 | + x = tf.keras.layers.Conv2D( |
| 76 | + 2, kernel_size=(3, 3), strides=(2, 2), activation='relu')(i) |
| 77 | + x = tf.keras.layers.ReLU()(x) |
| 78 | + return tf.keras.Model(i, x) |
| 79 | + |
| 80 | + def _get_stacked_convs_model(self): |
| 81 | + i = tf.keras.Input(shape=(64, 64, 3)) |
| 82 | + x = tf.keras.layers.Conv2D( |
| 83 | + 10, kernel_size=(3, 3), strides=(1, 1), activation='relu')(i) |
| 84 | + x = tf.keras.layers.Conv2D( |
| 85 | + # Setting strides to (1, 1) passes test, (2, 2) fails test? |
| 86 | + # Somehow one value is at border. |
| 87 | + # Train over 100 epochs, and issue goes away. |
| 88 | + # Why are all the first values zero? |
| 89 | + 10, kernel_size=(3, 3), strides=(2, 2), activation='relu')(x) |
| 90 | + x = tf.keras.layers.Conv2D( |
| 91 | + 10, kernel_size=(3, 3), strides=(2, 2), activation='relu')(x) |
| 92 | + x = tf.keras.layers.Conv2D( |
| 93 | + 5, kernel_size=(3, 3), strides=(2, 2), activation='relu')(x) |
| 94 | + x = tf.keras.layers.Conv2D( |
| 95 | + 2, kernel_size=(3, 3), strides=(2, 2), activation='relu')(x) |
| 96 | + return tf.keras.Model(i, x) |
| 97 | + |
| 98 | + def _get_conv_bn_relu_model(self): |
| 99 | + i = tf.keras.Input(shape=(6, 6, 3)) |
| 100 | + x = tf.keras.layers.Conv2D(3, kernel_size=(3, 3), strides=(2, 2))(i) |
| 101 | + x = tf.keras.layers.BatchNormalization()(x) |
| 102 | + x = tf.keras.layers.ReLU()(x) |
| 103 | + return tf.keras.Model(i, x) |
| 104 | + |
| 105 | + def _get_depthconv_bn_relu_model(self): |
| 106 | + i = tf.keras.Input(shape=(6, 6, 3)) |
| 107 | + x = tf.keras.layers.DepthwiseConv2D(kernel_size=(3, 3), strides=(2, 2))(i) |
| 108 | + x = tf.keras.layers.BatchNormalization()(x) |
| 109 | + x = tf.keras.layers.ReLU()(x) |
| 110 | + return tf.keras.Model(i, x) |
| 111 | + |
| 112 | + @parameterized.parameters( |
| 113 | + _get_single_conv_model, _get_single_dense_model, |
| 114 | + _get_single_conv_relu_model, _get_stacked_convs_model, |
| 115 | + _get_conv_bn_relu_model, _get_depthconv_bn_relu_model) |
| 116 | + def testModelEndToEnd(self, model_fn): |
| 117 | + # 1. Check whether quantized model graph can be constructed. |
| 118 | + model = model_fn(self) |
| 119 | + model = quantize.quantize_model(model) |
| 120 | + |
| 121 | + # 2. Sanity check to ensure basic training on random data works. |
| 122 | + x_train, y_train = self._create_test_data(model) |
| 123 | + model.compile(loss='mse', optimizer='sgd', metrics=['accuracy']) |
| 124 | + model.fit(x_train, y_train, epochs=10) |
| 125 | + |
| 126 | + x_test, y_test = self._create_test_data(model) |
| 127 | + |
| 128 | + y_tf = model.predict(x_test) |
| 129 | + |
| 130 | + # 3. Ensure conversion to TFLite works. |
| 131 | + _, tflite_file = tempfile.mkstemp('.tflite') |
| 132 | + print('TFLite File: ', tflite_file) |
| 133 | + with quantize.quantize_scope(): |
| 134 | + utils.convert_keras_to_tflite(model, tflite_file) |
| 135 | + |
| 136 | + # 4. Verify input runs on converted model. |
| 137 | + y_tfl = self._execute_tflite(tflite_file, x_test, y_test) |
| 138 | + |
| 139 | + # 5. Verify results are the same in TF and TFL. |
| 140 | + self.assertAllClose(y_tf, y_tfl) |
| 141 | + |
| 142 | + |
| 143 | +if __name__ == '__main__': |
| 144 | + tf.test.main() |
0 commit comments