Skip to content

Commit 19d930c

Browse files
Allen Wangtensorflower-gardener
authored andcommitted
Update ResNet README
PiperOrigin-RevId: 301872579
1 parent 4ae295c commit 19d930c

File tree

1 file changed

+6
-6
lines changed
  • official/vision/image_classification

1 file changed

+6
-6
lines changed

official/vision/image_classification/README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ For more information about other types of models, please refer to this
1313
Similar to the [estimator implementation](../../r1/resnet), the Keras
1414
implementation has code for the ImageNet dataset. The ImageNet
1515
version uses a ResNet50 model implemented in
16-
[`resnet_model.py`](./resnet_model.py).
16+
[`resnet_model.py`](./resnet/resnet_model.py).
1717

1818
Please make sure that you have the latest version of TensorFlow
1919
installed and
@@ -36,14 +36,14 @@ provide a few options.
3636
Once your dataset is ready, you can begin training the model as follows:
3737

3838
```bash
39-
python resnet_imagenet_main.py
39+
python resnet/resnet_imagenet_main.py
4040
```
4141

4242
Again, if you did not download the data to the default directory, specify the
4343
location with the `--data_dir` flag:
4444

4545
```bash
46-
python resnet_imagenet_main.py --data_dir=/path/to/imagenet
46+
python resnet/resnet_imagenet_main.py --data_dir=/path/to/imagenet
4747
```
4848

4949
There are more flag options you can specify. Here are some examples:
@@ -62,7 +62,7 @@ For example, this is a typical command line to run with ImageNet data with
6262
batch size 128 per GPU:
6363

6464
```bash
65-
python -m resnet_imagenet_main \
65+
python -m resnet/resnet_imagenet_main.py \
6666
--model_dir=/tmp/model_dir/something \
6767
--num_gpus=2 \
6868
--batch_size=128 \
@@ -120,7 +120,7 @@ From a GCE VM, you can run the following command to train ResNet for one epoch
120120
on a v2-8 or v3-8 TPU:
121121

122122
```bash
123-
python resnet_ctl_imagenet_main.py \
123+
python resnet/resnet_ctl_imagenet_main.py \
124124
--tpu=$TPU_NAME \
125125
--model_dir=$MODEL_DIR \
126126
--data_dir=$DATA_DIR \
@@ -140,7 +140,7 @@ python resnet_ctl_imagenet_main.py \
140140
To train the ResNet to convergence, run it for 90 epochs:
141141

142142
```bash
143-
python resnet_ctl_imagenet_main.py \
143+
python resnet/resnet_ctl_imagenet_main.py \
144144
--tpu=$TPU_NAME \
145145
--model_dir=$MODEL_DIR \
146146
--data_dir=$DATA_DIR \

0 commit comments

Comments
 (0)