|
1 |
| -# Mobilenet V2 |
2 |
| -This folder contains building code for Mobilenet V2, based on |
3 |
| -[Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation] |
4 |
| -(https://arxiv.org/abs/1801.04381) |
| 1 | +# MobileNetV2 |
| 2 | +This folder contains building code for MobileNetV2, based on |
| 3 | +[MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) |
5 | 4 |
|
6 |
| -# Pretrained model |
7 |
| -TODO |
| 5 | +# Performance |
| 6 | +## Latency |
| 7 | +This is the timing of [MobileNetV1](../mobilenet_v1.md) vs MobileNetV2 using |
| 8 | +TF-Lite on the large core of Pixel 1 phone. |
| 9 | + |
| 10 | + |
| 11 | + |
| 12 | +## MACs |
| 13 | +MACs, also sometimes known as MADDs - the number of multiply-accumulates needed |
| 14 | +to compute an inference on a single image is a common metric to measure the efficiency of the model. |
| 15 | + |
| 16 | +Below is the graph comparing V2 vs a few selected networks. The size |
| 17 | +of each blob represents the number of parameters. Note for [ShuffleNet](https://arxiv.org/abs/1707.01083) there |
| 18 | +are no published size numbers. We estimate it to be comparable to MobileNetV2 numbers. |
| 19 | + |
| 20 | + |
| 21 | + |
| 22 | +# Pretrained models |
| 23 | +## Imagenet Checkpoints |
| 24 | + |
| 25 | + Classification Checkpoint | MACs (M)| Parameters (M)| Top 1 Accuracy| Top 5 Accuracy | Mobile CPU (ms) Pixel 1 |
| 26 | +---------------------------|---------|---------------|---------|----|------------- |
| 27 | +| [mobilenet_v2_1.4_224](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz) | 582 | 6.06 | 75.0 | 92.5 | 138.0 |
| 28 | +| [mobilenet_v2_1.3_224](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.3_224.tgz) | 509 | 5.34 | 74.4 | 92.1 | 123.0 |
| 29 | +| [mobilenet_v2_1.0_224](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz) | 300 | 3.47 | 71.8 | 91.0 | 73.8 |
| 30 | +| [mobilenet_v2_1.0_192](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_192.tgz) | 221 | 3.47 | 70.7 | 90.1 | 55.1 |
| 31 | +| [mobilenet_v2_1.0_160](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_160.tgz) | 154 | 3.47 | 68.8 | 89.0 | 40.2 |
| 32 | +| [mobilenet_v2_1.0_128](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_128.tgz) | 99 | 3.47 | 65.3 | 86.9 | 27.6 |
| 33 | +| [mobilenet_v2_1.0_96](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_96.tgz) | 56 | 3.47 | 60.3 | 83.2 | 17.6 |
| 34 | +| [mobilenet_v2_0.75_224](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.75_224.tgz) | 209 | 2.61 | 69.8 | 89.6 | 55.8 |
| 35 | +| [mobilenet_v2_0.75_192](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.75_192.tgz) | 153 | 2.61 | 68.7 | 88.9 | 41.6 |
| 36 | +| [mobilenet_v2_0.75_160](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.75_160.tgz) | 107 | 2.61 | 66.4 | 87.3 | 30.4 |
| 37 | +| [mobilenet_v2_0.75_128](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.75_128.tgz) | 69 | 2.61 | 63.2 | 85.3 | 21.9 |
| 38 | +| [mobilenet_v2_0.75_96](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.75_96.tgz) | 39 | 2.61 | 58.8 | 81.6 | 14.2 |
| 39 | +| [mobilenet_v2_0.5_224](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.5_224.tgz) | 97 | 1.95 | 65.4 | 86.4 | 28.7 |
| 40 | +| [mobilenet_v2_0.5_192](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.5_192.tgz) | 71 | 1.95 | 63.9 | 85.4 | 21.1 |
| 41 | +| [mobilenet_v2_0.5_160](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.5_160.tgz) | 50 | 1.95 | 61.0 | 83.2 | 14.9 |
| 42 | +| [mobilenet_v2_0.5_128](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.5_128.tgz) | 32 | 1.95 | 57.7 | 80.8 | 9.9 |
| 43 | +| [mobilenet_v2_0.5_96](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.5_96.tgz) | 18 | 1.95 | 51.2 | 75.8 | 6.4 |
| 44 | +| [mobilenet_v2_0.35_224](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.35_224.tgz) | 59 | 1.66 | 60.3 | 82.9 | 19.7 |
| 45 | +| [mobilenet_v2_0.35_192](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.35_192.tgz) | 43 | 1.66 | 58.2 | 81.2 | 14.6 |
| 46 | +| [mobilenet_v2_0.35_160](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.35_160.tgz) | 30 | 1.66 | 55.7 | 79.1 | 10.5 |
| 47 | +| [mobilenet_v2_0.35_128](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.35_128.tgz) | 20 | 1.66 | 50.8 | 75.0 | 6.9 |
| 48 | +| [mobilenet_v2_0.35_96](https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_0.35_96.tgz) | 11 | 1.66 | 45.5 | 70.4 | 4.5 |
8 | 49 |
|
9 | 50 | # Example
|
10 |
| -TODO |
11 | 51 |
|
| 52 | +See this [ipython notebook](mobilenet_example.ipynb) or open and run the network directly in [Colaboratory](https://colab.research.google.com/github/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_example.ipynb). |
12 | 53 |
|
0 commit comments