|
24 | 24 |
|
25 | 25 | CENTER_CROP_FRACTION = 0.875
|
26 | 26 |
|
| 27 | +# Calculated from the ImageNet training set |
| 28 | +MEAN_NORM = (0.485, 0.456, 0.406) |
| 29 | +STDDEV_NORM = (0.229, 0.224, 0.225) |
| 30 | +MEAN_RGB = tuple(255 * i for i in MEAN_NORM) |
| 31 | +STDDEV_RGB = tuple(255 * i for i in STDDEV_NORM) |
| 32 | + |
27 | 33 | # Alias for convenience. PLEASE use `box_ops.horizontal_flip_boxes` directly.
|
28 | 34 | horizontal_flip_boxes = box_ops.horizontal_flip_boxes
|
29 | 35 |
|
@@ -66,19 +72,17 @@ def clip_or_pad_to_fixed_size(input_tensor, size, constant_values=0):
|
66 | 72 |
|
67 | 73 |
|
68 | 74 | def normalize_image(image: tf.Tensor,
|
69 |
| - offset: Sequence[float] = (0.485, 0.456, 0.406), |
70 |
| - scale: Sequence[float] = (0.229, 0.224, 0.225)): |
| 75 | + offset: Sequence[float] = MEAN_NORM, |
| 76 | + scale: Sequence[float] = STDDEV_NORM): |
71 | 77 | """Normalizes the image to zero mean and unit variance."""
|
72 | 78 | with tf.name_scope('normalize_image'):
|
73 | 79 | image = tf.image.convert_image_dtype(image, dtype=tf.float32)
|
74 | 80 | return normalize_scaled_float_image(image, offset, scale)
|
75 | 81 |
|
76 | 82 |
|
77 | 83 | def normalize_scaled_float_image(image: tf.Tensor,
|
78 |
| - offset: Sequence[float] = (0.485, 0.456, |
79 |
| - 0.406), |
80 |
| - scale: Sequence[float] = (0.229, 0.224, |
81 |
| - 0.225)): |
| 84 | + offset: Sequence[float] = MEAN_NORM, |
| 85 | + scale: Sequence[float] = STDDEV_NORM): |
82 | 86 | """Normalizes a scaled float image to zero mean and unit variance.
|
83 | 87 |
|
84 | 88 | It assumes the input image is float dtype with values in [0, 1).
|
|
0 commit comments