|
356 | 356 | "source": [
|
357 | 357 | "ds = easy_input_function(train_df, label_key='income_bracket', num_epochs=5, shuffle=True, batch_size=10)\n",
|
358 | 358 | "\n",
|
359 |
| - "for feature_batch, label_batch in ds:\n", |
360 |
| - " break\n", |
361 |
| - " \n", |
362 |
| - "print('Some feature keys:', list(feature_batch.keys())[:5])\n", |
363 |
| - "print()\n", |
364 |
| - "print('A batch of Ages :', feature_batch['age'])\n", |
365 |
| - "print()\n", |
366 |
| - "print('A batch of Labels:', label_batch )" |
| 359 | + "for feature_batch, label_batch in ds.take(1):\n", |
| 360 | + " print('Some feature keys:', list(feature_batch.keys())[:5])\n", |
| 361 | + " print()\n", |
| 362 | + " print('A batch of Ages :', feature_batch['age'])\n", |
| 363 | + " print()\n", |
| 364 | + " print('A batch of Labels:', label_batch )" |
367 | 365 | ],
|
368 | 366 | "execution_count": 0,
|
369 | 367 | "outputs": []
|
|
426 | 424 | },
|
427 | 425 | "cell_type": "code",
|
428 | 426 | "source": [
|
429 |
| - "for feature_batch, label_batch in ds:\n", |
430 |
| - " break\n", |
431 |
| - " \n", |
432 |
| - "print('Feature keys:', list(feature_batch.keys())[:5])\n", |
433 |
| - "print()\n", |
434 |
| - "print('Age batch :', feature_batch['age'])\n", |
435 |
| - "print()\n", |
436 |
| - "print('Label batch :', label_batch )" |
| 427 | + "for feature_batch, label_batch in ds.take(1):\n", |
| 428 | + " print('Feature keys:', list(feature_batch.keys())[:5])\n", |
| 429 | + " print()\n", |
| 430 | + " print('Age batch :', feature_batch['age'])\n", |
| 431 | + " print()\n", |
| 432 | + " print('Label batch :', label_batch )" |
437 | 433 | ],
|
438 | 434 | "execution_count": 0,
|
439 | 435 | "outputs": []
|
|
546 | 542 | },
|
547 | 543 | "cell_type": "code",
|
548 | 544 | "source": [
|
549 |
| - "classifier = tf.estimator.LinearClassifier(feature_columns=[age], n_classes=2)\n", |
| 545 | + "classifier = tf.estimator.LinearClassifier(feature_columns=[age])\n", |
550 | 546 | "classifier.train(train_inpf)\n",
|
551 | 547 | "result = classifier.evaluate(test_inpf)\n",
|
552 | 548 | "\n",
|
|
627 | 623 | },
|
628 | 624 | "cell_type": "code",
|
629 | 625 | "source": [
|
630 |
| - "classifier = tf.estimator.LinearClassifier(feature_columns=my_numeric_columns, n_classes=2)\n", |
| 626 | + "classifier = tf.estimator.LinearClassifier(feature_columns=my_numeric_columns)\n", |
631 | 627 | "classifier.train(train_inpf)\n",
|
632 | 628 | "\n",
|
633 | 629 | "result = classifier.evaluate(test_inpf)\n",
|
|
876 | 872 | },
|
877 | 873 | "cell_type": "code",
|
878 | 874 | "source": [
|
879 |
| - "classifier = tf.estimator.LinearClassifier(feature_columns=my_numeric_columns+my_categorical_columns, n_classes=2)\n", |
| 875 | + "classifier = tf.estimator.LinearClassifier(feature_columns=my_numeric_columns+my_categorical_columns)\n", |
880 | 876 | "classifier.train(train_inpf)\n",
|
881 | 877 | "result = classifier.evaluate(test_inpf)\n",
|
882 | 878 | "\n",
|
|
0 commit comments