|
| 1 | +# Copyright 2020 The TensorFlow Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +"""Base class for Decoding Strategies (beam_search, top_k, top_p and greedy).""" |
| 16 | + |
| 17 | +import abc |
| 18 | +from typing import Any, Callable, Dict, Tuple |
| 19 | + |
| 20 | +import tensorflow as tf |
| 21 | + |
| 22 | +from tensorflow.python.framework import dtypes |
| 23 | + |
| 24 | +Output = Tuple[tf.Tensor, tf.Tensor] |
| 25 | +InternalState = Tuple[tf.Tensor, tf.Tensor, tf.Tensor, Dict] |
| 26 | +InitialState = Tuple[Dict[str, Any], Dict[str, Any]] |
| 27 | + |
| 28 | + |
| 29 | +class StateKeys: |
| 30 | + """Keys to dictionary storing the state of Decoding loop.""" |
| 31 | + |
| 32 | + # Variable storing the loop index. |
| 33 | + CUR_INDEX = "CUR_INDEX" |
| 34 | + |
| 35 | + # Top sequences that are alive for each batch item. Alive sequences are ones |
| 36 | + # that have not generated an EOS token. Sequences that reach EOS are marked as |
| 37 | + # finished and moved to the FINISHED_SEQ tensor. |
| 38 | + # Has shape [batch_size, beam_size, CUR_INDEX + 1] for SequenceBeamSearch and |
| 39 | + # [batch_size, CUR_INDEX + 1] otherwise. |
| 40 | + ALIVE_SEQ = "ALIVE_SEQ" |
| 41 | + # Log probabilities of each alive sequence. Shape [batch_size, beam_size] |
| 42 | + ALIVE_LOG_PROBS = "ALIVE_LOG_PROBS" |
| 43 | + # Dictionary of cached values for each alive sequence. The cache stores |
| 44 | + # the encoder output, attention bias, and the decoder attention output from |
| 45 | + # the previous iteration. |
| 46 | + ALIVE_CACHE = "ALIVE_CACHE" |
| 47 | + |
| 48 | + # Top finished sequences for each batch item. |
| 49 | + # Has shape [batch_size, beam_size, CUR_INDEX + 1]. Sequences that are |
| 50 | + # shorter than CUR_INDEX + 1 are padded with 0s. |
| 51 | + FINISHED_SEQ = "FINISHED_SEQ" |
| 52 | + # Scores for each finished sequence. Score = log probability / length norm |
| 53 | + # Shape [batch_size, beam_size] |
| 54 | + FINISHED_SCORES = "FINISHED_SCORES" |
| 55 | + # Flags indicating which sequences in the finished sequences are finished. |
| 56 | + # At the beginning, all of the sequences in FINISHED_SEQ are filler values. |
| 57 | + # True -> finished sequence, False -> filler. Shape [batch_size, beam_size] |
| 58 | + FINISHED_FLAGS = "FINISHED_FLAGS" |
| 59 | + |
| 60 | + |
| 61 | +class DecodingModule(tf.Module, metaclass=abc.ABCMeta): |
| 62 | + """A base class for the API required for decoding (go/decoding-tf-nlp).""" |
| 63 | + |
| 64 | + def __init__(self, |
| 65 | + length_normalization_fn: Callable[[int, tf.DType], float], |
| 66 | + dtype: tf.DType = tf.float32): |
| 67 | + """Initialize the Decoding Module. |
| 68 | +
|
| 69 | + Args: |
| 70 | + length_normalization_fn: Closure for returning length normalization |
| 71 | + parameter. Function accepts input as length, dtype and returns float. |
| 72 | + dtype: A tensorflow data type used for score computation. The default is |
| 73 | + tf.float32. |
| 74 | + """ |
| 75 | + self.length_normalization_fn = length_normalization_fn |
| 76 | + self.dtype = tf.as_dtype(dtype) |
| 77 | + |
| 78 | + def generate(self, |
| 79 | + initial_ids: tf.Tensor, |
| 80 | + initial_cache: Dict[str, tf.Tensor]) -> Output: |
| 81 | + """Implements the decoding strategy (beam_search or sampling). |
| 82 | +
|
| 83 | + Args: |
| 84 | + initial_ids: initial ids to pass into the symbols_to_logits_fn. |
| 85 | + int tensor with shape [batch_size, 1] |
| 86 | + initial_cache: dictionary for caching model outputs from previous step. |
| 87 | + Returns: |
| 88 | + Tuple of tensors representing |
| 89 | + finished_sequence: shape [batch, max_seq_length] |
| 90 | + finished_scores: [batch] |
| 91 | + """ |
| 92 | + batch_size = ( |
| 93 | + initial_ids.shape.as_list()[0] |
| 94 | + if self.padded_decode else tf.shape(initial_ids)[0]) |
| 95 | + |
| 96 | + state, state_shapes = self._create_initial_state(initial_ids, |
| 97 | + initial_cache, |
| 98 | + batch_size) |
| 99 | + |
| 100 | + def _generate_step(state): |
| 101 | + topk_seq, topk_log_probs, topk_ids, new_cache = self._grow_alive_seq( |
| 102 | + state, batch_size) |
| 103 | + new_finished_flags = self._finished_flags(topk_ids, state) |
| 104 | + alive_state = self._get_new_alive_state(topk_seq, |
| 105 | + topk_log_probs, |
| 106 | + new_finished_flags, |
| 107 | + new_cache) |
| 108 | + finished_state = self._get_new_finished_state(state, |
| 109 | + topk_seq, |
| 110 | + topk_log_probs, |
| 111 | + new_finished_flags, |
| 112 | + batch_size) |
| 113 | + new_state = { |
| 114 | + StateKeys.CUR_INDEX: state[StateKeys.CUR_INDEX] + 1 |
| 115 | + } |
| 116 | + new_state.update(alive_state) |
| 117 | + new_state.update(finished_state) |
| 118 | + return [new_state] |
| 119 | + |
| 120 | + finished_state = tf.nest.map_structure( |
| 121 | + tf.stop_gradient, |
| 122 | + tf.while_loop( |
| 123 | + self._continue_search, |
| 124 | + _generate_step, |
| 125 | + loop_vars=[state], |
| 126 | + shape_invariants=[state_shapes], |
| 127 | + parallel_iterations=1)) |
| 128 | + final_state = self._process_finished_state(finished_state[0]) |
| 129 | + return final_state |
| 130 | + |
| 131 | + @abc.abstractmethod |
| 132 | + def _create_initial_state(self, |
| 133 | + initial_ids: tf.Tensor, |
| 134 | + initial_cache: Dict[str, tf.Tensor], |
| 135 | + batch_size: int) -> InitialState: |
| 136 | + """Return initial state dictionary and its shape invariants.""" |
| 137 | + pass |
| 138 | + |
| 139 | + @abc.abstractmethod |
| 140 | + def _grow_alive_seq(self, |
| 141 | + state: Dict[str, Any], |
| 142 | + batch_size: int) -> InternalState: |
| 143 | + """Grow alive sequences by one token. |
| 144 | +
|
| 145 | + Args: |
| 146 | + state: A dictionary with the current loop state. |
| 147 | + batch_size: The given batch size |
| 148 | +
|
| 149 | + Returns: |
| 150 | + Tuple of |
| 151 | + (Top sequences, |
| 152 | + Scores of returned sequences, |
| 153 | + New ids, |
| 154 | + New alive cache) |
| 155 | + """ |
| 156 | + pass |
| 157 | + |
| 158 | + @abc.abstractmethod |
| 159 | + def _get_new_alive_state( |
| 160 | + self, |
| 161 | + new_seq: tf.Tensor, |
| 162 | + new_log_probs: tf.Tensor, |
| 163 | + new_finished_flags: tf.Tensor, |
| 164 | + new_cache: Dict[str, tf.Tensor]) -> Dict[str, Any]: |
| 165 | + """Gather the sequences that are still alive. |
| 166 | +
|
| 167 | + Args: |
| 168 | + new_seq: New sequences generated by growing the current alive sequences |
| 169 | + int32 tensor with shape |
| 170 | + new_log_probs: Log probabilities of new sequences float32 tensor with |
| 171 | + shape |
| 172 | + new_finished_flags: A boolean Tensor indicates which sequences are live. |
| 173 | + new_cache: Dict of cached values for each sequence. |
| 174 | +
|
| 175 | + Returns: |
| 176 | + Dictionary with alive keys from StateKeys. |
| 177 | + """ |
| 178 | + pass |
| 179 | + |
| 180 | + @abc.abstractmethod |
| 181 | + def _get_new_finished_state(self, |
| 182 | + state: Dict[str, Any], |
| 183 | + new_seq: tf.Tensor, |
| 184 | + new_log_probs: tf.Tensor, |
| 185 | + new_finished_flags: tf.Tensor, |
| 186 | + batch_size: int) -> Dict[str, tf.Tensor]: |
| 187 | + """Combine new and old finished sequences. |
| 188 | +
|
| 189 | + Args: |
| 190 | + state: A dictionary with the current loop state. |
| 191 | + new_seq: New sequences generated by growing the current alive sequences |
| 192 | + int32 tensor. |
| 193 | + new_log_probs: Log probabilities of new sequences float32 tensor with |
| 194 | + shape. |
| 195 | + new_finished_flags: A boolean Tensor indicates which sequences are live. |
| 196 | + batch_size: The given batch size. |
| 197 | +
|
| 198 | + Returns: |
| 199 | + Dictionary with finished keys from StateKeys. |
| 200 | + """ |
| 201 | + pass |
| 202 | + |
| 203 | + @abc.abstractmethod |
| 204 | + def _process_finished_state(self, finished_state: Dict[str, Any]) -> Output: |
| 205 | + """Process the alive/finished state to return final sequences and scores.""" |
| 206 | + pass |
| 207 | + |
| 208 | + @abc.abstractmethod |
| 209 | + def _continue_search(self, state: Dict[str, Any]) -> tf.Tensor: |
| 210 | + """Returns a bool tensor if the decoding loop should continue.""" |
| 211 | + pass |
| 212 | + |
| 213 | + @abc.abstractmethod |
| 214 | + def _finished_flags(self, |
| 215 | + topk_ids: tf.Tensor, |
| 216 | + state: Dict[str, Any]) -> tf.Tensor: |
| 217 | + """Calculate the finished flags.""" |
| 218 | + pass |
| 219 | + |
| 220 | + def inf(self): |
| 221 | + """Returns a value close to infinity, but is still finite in `dtype`. |
| 222 | +
|
| 223 | + This is useful to get a very large value that is still zero when multiplied |
| 224 | + by zero. The floating-point "Inf" value is NaN when multiplied by zero. |
| 225 | +
|
| 226 | + Returns: |
| 227 | + A very large value. |
| 228 | + """ |
| 229 | + if self.dtype == dtypes.float32 or self.dtype == dtypes.bfloat16: |
| 230 | + return 1e7 |
| 231 | + elif self.dtype == dtypes.float16: |
| 232 | + return dtypes.float16.max |
| 233 | + else: |
| 234 | + raise AssertionError("Invalid dtype: %s" % self.dtype) |
| 235 | + |
| 236 | + @staticmethod |
| 237 | + def _log_prob_from_logits(logits): |
| 238 | + return logits - tf.reduce_logsumexp(logits, axis=-1, keepdims=True) |
| 239 | + |
| 240 | + @staticmethod |
| 241 | + def _shape_list(tensor): |
| 242 | + """Return a list of the tensor's shape, and ensure no None values in list.""" |
| 243 | + # Get statically known shape (may contain None's for unknown dimensions) |
| 244 | + shape = tensor.get_shape().as_list() |
| 245 | + |
| 246 | + # Ensure that the shape values are not None |
| 247 | + dynamic_shape = tf.shape(tensor) |
| 248 | + for i in range(len(shape)): # pylint: disable=consider-using-enumerate |
| 249 | + if shape[i] is None: |
| 250 | + shape[i] = dynamic_shape[i] |
| 251 | + return shape |
| 252 | + |
| 253 | + @staticmethod |
| 254 | + def _get_shape_keep_last_dim(tensor): |
| 255 | + shape_list_obj = DecodingModule._shape_list(tensor) |
| 256 | + for i in range(len(shape_list_obj) - 1): |
| 257 | + shape_list_obj[i] = None |
| 258 | + |
| 259 | + if isinstance(shape_list_obj[-1], tf.Tensor): |
| 260 | + shape_list_obj[-1] = None |
| 261 | + return tf.TensorShape(shape_list_obj) |
| 262 | + |
| 263 | + @staticmethod |
| 264 | + def _expand_to_same_rank(tensor, target): |
| 265 | + """Expands a given tensor to target's rank to be broadcastable. |
| 266 | +
|
| 267 | + Args: |
| 268 | + tensor: input tensor to tile. Shape: [b, d1, ..., da] |
| 269 | + target: target tensor. Shape: [b, d1, ..., da, ..., dn] |
| 270 | +
|
| 271 | + Returns: |
| 272 | + Tiled tensor of shape [b, d1, ..., da, 1, ..., 1] with same rank of target |
| 273 | +
|
| 274 | + Raises: |
| 275 | + ValueError, if the shape rank of rank tensor/target is None. |
| 276 | + """ |
| 277 | + if tensor.shape.rank is None: |
| 278 | + raise ValueError("Expect rank for tensor shape, but got None.") |
| 279 | + if target.shape.rank is None: |
| 280 | + raise ValueError("Expect rank for target shape, but got None.") |
| 281 | + |
| 282 | + with tf.name_scope("expand_rank"): |
| 283 | + diff_rank = target.shape.rank - tensor.shape.rank |
| 284 | + for _ in range(diff_rank): |
| 285 | + tensor = tf.expand_dims(tensor, -1) |
| 286 | + return tensor |
| 287 | + |
| 288 | + |
| 289 | + |
0 commit comments