@@ -351,32 +351,32 @@ def _betainc_der_power_series(a, b, x, dtype, use_power_series):
351
351
# 2F1(a, 1 - b; a + 1; x) / a
352
352
def power_series_evaluation (should_stop , values , gradients ):
353
353
n , product , series_sum = values
354
- dpdb , da , db = gradients
354
+ product_grad_b , da , db = gradients
355
355
356
356
x_div_n = safe_x / n
357
357
factor = (n - safe_b ) * x_div_n
358
358
apn = safe_a + n
359
359
360
360
new_product = product * factor
361
361
term = new_product / apn
362
- new_dpdb = factor * dpdb - product * x_div_n
362
+ new_product_grad_b = factor * product_grad_b - product * x_div_n
363
363
new_da = da - new_product / tf .math .square (apn )
364
- new_db = db + new_dpdb / apn
364
+ new_db = db + new_product_grad_b / apn
365
365
366
366
values = n + one , new_product , series_sum + term
367
- gradients = new_dpdb , new_da , new_db
367
+ gradients = new_product_grad_b , new_da , new_db
368
368
369
369
return should_stop | (tf .math .abs (term ) <= tolerance ), values , gradients
370
370
371
- n = one
372
- product = tf .ones_like (safe_a )
373
- series_sum = one / safe_a
374
- initial_values = (n , product , series_sum )
371
+ initial_n = one
372
+ initial_product = tf .ones_like (safe_a )
373
+ initial_series_sum = one / safe_a
374
+ initial_values = (initial_n , initial_product , initial_series_sum )
375
375
376
- dpdb = tf .zeros_like (safe_b )
377
- da = - tf .math .reciprocal (tf .math .square (safe_a ))
378
- db = dpdb
379
- initial_gradients = (dpdb , da , db )
376
+ initial_product_grad_b = tf .zeros_like (safe_b )
377
+ initial_da = - tf .math .reciprocal (tf .math .square (safe_a ))
378
+ initial_db = initial_product_grad_b
379
+ initial_gradients = (initial_product_grad_b , initial_da , initial_db )
380
380
381
381
(_ , values , gradients ) = tf .while_loop (
382
382
cond = lambda stop , * _ : tf .reduce_any (~ stop ),
0 commit comments