@@ -179,7 +179,7 @@ def continued_fraction_evaluation(should_stop, iteration, values, gradients):
179
179
delta = new_c * new_d
180
180
new_f = f * delta
181
181
182
- new_c_grad = (numerator_grad * c - numerator * c_grad ) / ( c * c )
182
+ new_c_grad = (numerator_grad * c - numerator * c_grad ) / tf . math . square ( c )
183
183
new_d_grad = - new_d * new_d * (numerator_grad * d + numerator * d_grad )
184
184
new_f_grad = f_grad * delta + (f * new_c_grad * new_d ) + (
185
185
f * new_d_grad * new_c )
@@ -204,7 +204,7 @@ def continued_fraction_evaluation(should_stop, iteration, values, gradients):
204
204
initial_f = initial_d
205
205
initial_values = (initial_c , initial_d , initial_f )
206
206
207
- initial_d_grad = tf .concat ([one - b , ap1 ], axis = - 1 ) * x / tf .square (
207
+ initial_d_grad = tf .concat ([one - b , ap1 ], axis = - 1 ) * x / tf .math . square (
208
208
x * apb - ap1 )
209
209
initial_c_grad = tf .zeros_like (initial_d_grad )
210
210
initial_f_grad = initial_d_grad
@@ -314,7 +314,7 @@ def power_series_evaluation(should_stop, values, gradients):
314
314
new_product = product * factor
315
315
term = new_product / apn
316
316
new_dpdb = factor * dpdb - product * x_div_n
317
- new_da = da - new_product / ( apn * apn )
317
+ new_da = da - new_product / tf . math . square ( apn )
318
318
new_db = db + new_dpdb / apn
319
319
320
320
values = n + one , new_product , series_sum + term
@@ -328,7 +328,7 @@ def power_series_evaluation(should_stop, values, gradients):
328
328
initial_values = (n , product , series_sum )
329
329
330
330
dpdb = tf .zeros_like (safe_b )
331
- da = - tf .math .reciprocal (safe_a * safe_a )
331
+ da = - tf .math .reciprocal (tf . math . square ( safe_a ) )
332
332
db = dpdb
333
333
initial_gradients = (dpdb , da , db )
334
334
0 commit comments