-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Open
Description
Describe the bug
I am encountering an AttributeError: 'tuple' object has no attribute 'rank'
when using tfp.layers.DenseVariational
as the first layer following a tf.keras.Input
layer in a Keras Functional API model. The error seems to occur during Keras's internal InputSpec
compatibility check, where it expects a tf.TensorShape
object but receives a Python tuple for the input shape from the DenseVariational
layer.
To Reproduce
Steps to reproduce the behavior:
- Environment: Python 3.11.9 on Windows 10.
- Installed packages:
tensorflow==2.18.0
tensorflow-probability==0.24.0
numpy==1.26.4
- Run the following minimal code snippet:
import tensorflow as tf
import tensorflow_probability as tfp
tfk = tf.keras
tfkl = tf.keras.layers
tfd = tfp.distributions
print(f"TensorFlow Version: {tf.__version__}")
print(f"TensorFlow Probability Version: {tfp.__version__}")
print(f"NumPy Version: {np.__version__}")
input_feature_size = 60
num_classes = 3
num_train_samples_example = 1000
kl_divergence_weight = 1.0 / num_train_samples_example
try:
inputs = tfk.Input(shape=(input_feature_size,), name="input_layer")
posterior_fn_constructor = tfp.layers.default_mean_field_normal_fn(is_singular=True)
prior_fn_constructor = tfp.layers.default_multivariate_normal_fn
x = tfp.layers.DenseVariational(
units=64,
make_posterior_fn=posterior_fn_constructor,
make_prior_fn=prior_fn_constructor,
kl_weight=kl_divergence_weight,
activation='relu',
name="dv1"
)(inputs)
outputs = tfkl.Dense(units=num_classes, name="logits")(x)
model = tfk.Model(inputs=inputs, outputs=outputs, name="bnn_test_model")
model.summary()
print("Model created successfully.")
except Exception as e:
print(f"\nError during model creation: {e}")
import traceback
traceback.print_exc()
An unexpected error occurred in main: 'tuple' object has no attribute 'rank'
Traceback (most recent call last):
File "C:\Users\W10\PycharmProjects\eurusd5\eurusd5.py", line 239, in <module>
accuracies, true_labels, predicted_labels = walk_forward_tfp_bnn(
^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\W10\PycharmProjects\eurusd5\eurusd5.py", line 151, in walk_forward_tfp_bnn
bnn_model = create_bnn_model(input_shape_for_model, num_classes, len(X_train_scaled))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\W10\PycharmProjects\eurusd5\eurusd5.py", line 78, in create_bnn_model
x = tfp.layers.DenseVariational(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\W10\PycharmProjects\eurusd5\.venv\Lib\site-packages\tf_keras\src\utils\traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\W10\PycharmProjects\eurusd5\.venv\Lib\site-packages\tf_keras\src\engine\input_spec.py", line 251, in assert_input_compatibility
ndim = x.shape.rank
^^^^^^^^^^^^
AttributeError: 'tuple' object has no attribute 'rank'
System information
OS Platform and Distribution: Windows 10
TensorFlow installed from: pip
TensorFlow version: 2.18.0
TensorFlow Probability version: 0.24.0
Python version: 3.11.9
NumPy version: 1.26.4
CUDA/cuDNN version: N/A (CPU only)
GPU model and memory: N/A (CPU only)
Additional context
The issue appears to be specific to how tfp.layers.DenseVariational (in TFP 0.24.0) interacts with the Keras Functional API's input shape handling when using TensorFlow 2.18.0, particularly for 1D vector inputs. Attempts to use batch_input_shape in tf.keras.Input or explicitly pass input_shape to DenseVariational did not resolve this specific "rank" error. The error occurs even when using TFP's default make_posterior_fn and make_prior_fn.
Thank you for your help!
Metadata
Metadata
Assignees
Labels
No labels