|
| 1 | +/* Copyright 2020 The TensorFlow Quantum Authors. All Rights Reserved. |
| 2 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +you may not use this file except in compliance with the License. |
| 4 | +You may obtain a copy of the License at |
| 5 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +Unless required by applicable law or agreed to in writing, software |
| 7 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +See the License for the specific language governing permissions and |
| 10 | +limitations under the License. |
| 11 | +==============================================================================*/ |
| 12 | + |
| 13 | +#include <memory> |
| 14 | +#include <vector> |
| 15 | + |
| 16 | +#include <chrono> |
| 17 | +#include <custatevec.h> |
| 18 | + |
| 19 | +#include "../qsim/lib/circuit.h" |
| 20 | +#include "../qsim/lib/gate_appl.h" |
| 21 | +#include "../qsim/lib/gates_cirq.h" |
| 22 | +#include "../qsim/lib/gates_qsim.h" |
| 23 | +#include "../qsim/lib/seqfor.h" |
| 24 | +#include "../qsim/lib/simulator_custatevec.h" |
| 25 | +#include "../qsim/lib/statespace_custatevec.h" |
| 26 | +#include "tensorflow/core/framework/op_kernel.h" |
| 27 | +#include "tensorflow/core/framework/shape_inference.h" |
| 28 | +#include "tensorflow/core/framework/tensor_shape.h" |
| 29 | +#include "tensorflow/core/lib/core/error_codes.pb.h" |
| 30 | +#include "tensorflow/core/lib/core/status.h" |
| 31 | +#include "tensorflow/core/lib/core/threadpool.h" |
| 32 | +#include "tensorflow/core/platform/mutex.h" |
| 33 | +#include "tensorflow_quantum/core/ops/parse_context.h" |
| 34 | +#include "tensorflow_quantum/core/proto/pauli_sum.pb.h" |
| 35 | +#include "tensorflow_quantum/core/proto/program.pb.h" |
| 36 | +#include "tensorflow_quantum/core/src/util_qsim.h" |
| 37 | + |
| 38 | +namespace tfq { |
| 39 | + |
| 40 | +using ::tensorflow::Status; |
| 41 | +using ::tfq::proto::PauliSum; |
| 42 | +using ::tfq::proto::Program; |
| 43 | + |
| 44 | +typedef qsim::Cirq::GateCirq<float> QsimGate; |
| 45 | +typedef qsim::Circuit<QsimGate> QsimCircuit; |
| 46 | + |
| 47 | + |
| 48 | +class TfqSimulateExpectationOpCuQuantum : public tensorflow::OpKernel { |
| 49 | + public: |
| 50 | + explicit TfqSimulateExpectationOpCuQuantum(tensorflow::OpKernelConstruction* context) |
| 51 | + : OpKernel(context) { } |
| 52 | + |
| 53 | + void Compute(tensorflow::OpKernelContext* context) override { |
| 54 | + // TODO (mbbrough): add more dimension checks for other inputs here. |
| 55 | + const int num_inputs = context->num_inputs(); |
| 56 | + OP_REQUIRES(context, num_inputs == 4, |
| 57 | + tensorflow::errors::InvalidArgument(absl::StrCat( |
| 58 | + "Expected 4 inputs, got ", num_inputs, " inputs."))); |
| 59 | + |
| 60 | + // Create the output Tensor. |
| 61 | + const int output_dim_batch_size = context->input(0).dim_size(0); |
| 62 | + const int output_dim_op_size = context->input(3).dim_size(1); |
| 63 | + tensorflow::TensorShape output_shape; |
| 64 | + output_shape.AddDim(output_dim_batch_size); |
| 65 | + output_shape.AddDim(output_dim_op_size); |
| 66 | + |
| 67 | + tensorflow::Tensor* output = nullptr; |
| 68 | + tensorflow::AllocatorAttributes alloc_attr; |
| 69 | + alloc_attr.set_on_host(true); // why?? |
| 70 | + alloc_attr.set_gpu_compatible(true); |
| 71 | + OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output, |
| 72 | + alloc_attr)); |
| 73 | + auto output_tensor = output->matrix<float>(); |
| 74 | + // Parse program protos. |
| 75 | + std::vector<Program> programs; |
| 76 | + std::vector<int> num_qubits; |
| 77 | + std::vector<std::vector<PauliSum>> pauli_sums; // why is this a vector of vectors?? |
| 78 | + OP_REQUIRES_OK(context, GetProgramsAndNumQubits(context, &programs, |
| 79 | + &num_qubits, &pauli_sums)); |
| 80 | + |
| 81 | + std::vector<SymbolMap> maps; |
| 82 | + OP_REQUIRES_OK(context, GetSymbolMaps(context, &maps)); |
| 83 | + |
| 84 | + OP_REQUIRES(context, programs.size() == maps.size(), |
| 85 | + tensorflow::errors::InvalidArgument(absl::StrCat( |
| 86 | + "Number of circuits and symbol_values do not match. Got ", |
| 87 | + programs.size(), " circuits and ", maps.size(), |
| 88 | + " symbol values."))); |
| 89 | + |
| 90 | + // Construct qsim circuits. |
| 91 | + std::vector<QsimCircuit> qsim_circuits(programs.size(), QsimCircuit()); |
| 92 | + std::vector<std::vector<qsim::GateFused<QsimGate>>> fused_circuits( |
| 93 | + programs.size(), std::vector<qsim::GateFused<QsimGate>>({})); |
| 94 | + |
| 95 | + Status parse_status = Status::OK(); |
| 96 | + auto p_lock = tensorflow::mutex(); |
| 97 | + auto construct_f = [&](int start, int end) { |
| 98 | + for (int i = start; i < end; i++) { |
| 99 | + Status local = |
| 100 | + QsimCircuitFromProgram(programs[i], maps[i], num_qubits[i], |
| 101 | + &qsim_circuits[i], &fused_circuits[i]); |
| 102 | + NESTED_FN_STATUS_SYNC(parse_status, local, p_lock); |
| 103 | + } |
| 104 | + }; |
| 105 | + |
| 106 | + const int num_cycles = 1000; |
| 107 | + context->device()->tensorflow_cpu_worker_threads()->workers->ParallelFor( |
| 108 | + programs.size(), num_cycles, construct_f); |
| 109 | + OP_REQUIRES_OK(context, parse_status); |
| 110 | + |
| 111 | + int max_num_qubits = 0; |
| 112 | + for (const int num : num_qubits) { |
| 113 | + max_num_qubits = std::max(max_num_qubits, num); |
| 114 | + } |
| 115 | + |
| 116 | + // create handles for simulator |
| 117 | + cublasCreate(&cublas_handle_); |
| 118 | + custatevecCreate(&custatevec_handle_); |
| 119 | + if (max_num_qubits >= 26 || programs.size() == 1) { |
| 120 | + ComputeLarge(num_qubits, fused_circuits, pauli_sums, context, |
| 121 | + &output_tensor); // HOW TO manage extraWorkspace size? |
| 122 | + } else { |
| 123 | + ComputeSmall(num_qubits, max_num_qubits, fused_circuits, pauli_sums, |
| 124 | + context, &output_tensor); |
| 125 | + } |
| 126 | + // destroy handles in sync with simulator lifetime |
| 127 | + cublasDestroy(cublas_handle_); |
| 128 | + custatevecDestroy(custatevec_handle_); |
| 129 | + } |
| 130 | + |
| 131 | + private: |
| 132 | + cublasHandle_t cublas_handle_; |
| 133 | + custatevecHandle_t custatevec_handle_; |
| 134 | + |
| 135 | + // Define the GPU implementation that launches the CUDA kernel. |
| 136 | + void ComputeLarge( |
| 137 | + const std::vector<int>& num_qubits, |
| 138 | + const std::vector<std::vector<qsim::GateFused<QsimGate>>>& fused_circuits, |
| 139 | + const std::vector<std::vector<PauliSum>>& pauli_sums, |
| 140 | + tensorflow::OpKernelContext* context, |
| 141 | + tensorflow::TTypes<float, 1>::Matrix* output_tensor) { |
| 142 | + // Instantiate qsim objects. |
| 143 | + using Simulator = qsim::SimulatorCuStateVec<float>; |
| 144 | + using StateSpace = Simulator::StateSpace; |
| 145 | + |
| 146 | + |
| 147 | + // Launch the cuda kernel. |
| 148 | + // Begin simulation. |
| 149 | + int largest_nq = 1; |
| 150 | + Simulator sim = Simulator(custatevec_handle_); |
| 151 | + StateSpace ss = StateSpace(cublas_handle_, custatevec_handle_); |
| 152 | + auto sv = ss.Create(largest_nq); |
| 153 | + ss.SetStateZero(sv); |
| 154 | + auto scratch = ss.Create(largest_nq); |
| 155 | + |
| 156 | + // Simulate programs one by one. Parallelizing over state vectors |
| 157 | + // we no longer parallelize over circuits. Each time we encounter a |
| 158 | + // a larger circuit we will grow the Statevector as necessary. |
| 159 | + for (int i = 0; i < fused_circuits.size(); i++) { |
| 160 | + int nq = num_qubits[i]; |
| 161 | + |
| 162 | + if (nq > largest_nq) { |
| 163 | + // need to switch to larger statespace. |
| 164 | + largest_nq = nq; |
| 165 | + sv = ss.Create(largest_nq); |
| 166 | + scratch = ss.Create(largest_nq); |
| 167 | + } |
| 168 | + // TODO: add heuristic here so that we do not always recompute |
| 169 | + // the state if there is a possibility that circuit[i] and |
| 170 | + // circuit[i + 1] produce the same state. |
| 171 | + ss.SetStateZero(sv); |
| 172 | + for (int j = 0; j < fused_circuits[i].size(); j++) { |
| 173 | + qsim::ApplyFusedGate(sim, fused_circuits[i][j], sv); |
| 174 | + } |
| 175 | + for (int j = 0; j < pauli_sums[i].size(); j++) { |
| 176 | + // (#679) Just ignore empty program |
| 177 | + if (fused_circuits[i].size() == 0) { |
| 178 | + (*output_tensor)(i, j) = -2.0; |
| 179 | + continue; |
| 180 | + } |
| 181 | + float exp_v = 0.0; |
| 182 | + OP_REQUIRES_OK(context, |
| 183 | + ComputeExpectationQsim(pauli_sums[i][j], sim, ss, sv, |
| 184 | + scratch, &exp_v)); |
| 185 | + (*output_tensor)(i, j) = exp_v; |
| 186 | + } |
| 187 | + } |
| 188 | + } |
| 189 | + |
| 190 | + void ComputeSmall( |
| 191 | + const std::vector<int>& num_qubits, const int max_num_qubits, |
| 192 | + const std::vector<std::vector<qsim::GateFused<QsimGate>>>& fused_circuits, |
| 193 | + const std::vector<std::vector<PauliSum>>& pauli_sums, |
| 194 | + tensorflow::OpKernelContext* context, |
| 195 | + tensorflow::TTypes<float, 1>::Matrix* output_tensor) { |
| 196 | + using Simulator = qsim::SimulatorCuStateVec<float>; |
| 197 | + using StateSpace = Simulator::StateSpace; |
| 198 | + |
| 199 | + const int output_dim_op_size = output_tensor->dimension(1); |
| 200 | + |
| 201 | + Status compute_status = Status::OK(); |
| 202 | + auto c_lock = tensorflow::mutex(); |
| 203 | + auto DoWork = [&](int start, int end) { |
| 204 | + int old_batch_index = -2; |
| 205 | + int cur_batch_index = -1; |
| 206 | + int largest_nq = 1; |
| 207 | + int cur_op_index; |
| 208 | + |
| 209 | + // Launch custatevec, begin simulation. |
| 210 | + auto sim = Simulator(custatevec_handle_); |
| 211 | + auto ss = StateSpace(cublas_handle_, custatevec_handle_); |
| 212 | + auto sv = ss.Create(largest_nq); |
| 213 | + auto scratch = ss.Create(largest_nq); |
| 214 | + for (int i = start; i < end; i++) { |
| 215 | + cur_batch_index = i / output_dim_op_size; |
| 216 | + cur_op_index = i % output_dim_op_size; |
| 217 | + |
| 218 | + const int nq = num_qubits[cur_batch_index]; |
| 219 | + |
| 220 | + // (#679) Just ignore empty program |
| 221 | + if (fused_circuits[cur_batch_index].size() == 0) { |
| 222 | + (*output_tensor)(cur_batch_index, cur_op_index) = -2.0; |
| 223 | + continue; |
| 224 | + } |
| 225 | + |
| 226 | + if (cur_batch_index != old_batch_index) { |
| 227 | + // We've run into a new state vector we must compute. |
| 228 | + // Only compute a new state vector when we have to. |
| 229 | + if (nq > largest_nq) { |
| 230 | + largest_nq = nq; |
| 231 | + sv = ss.Create(largest_nq); |
| 232 | + scratch = ss.Create(largest_nq); |
| 233 | + } |
| 234 | + // no need to update scratch_state since ComputeExpectation |
| 235 | + // will take care of things for us. |
| 236 | + ss.SetStateZero(sv); |
| 237 | + for (int j = 0; j < fused_circuits[cur_batch_index].size(); j++) { |
| 238 | + qsim::ApplyFusedGate(sim, fused_circuits[cur_batch_index][j], sv); |
| 239 | + } |
| 240 | + } |
| 241 | + |
| 242 | + float exp_v = 0.0; |
| 243 | + NESTED_FN_STATUS_SYNC( |
| 244 | + compute_status, |
| 245 | + ComputeExpectationQsim(pauli_sums[cur_batch_index][cur_op_index], |
| 246 | + sim, ss, sv, scratch, &exp_v), |
| 247 | + c_lock); |
| 248 | + (*output_tensor)(cur_batch_index, cur_op_index) = exp_v; |
| 249 | + old_batch_index = cur_batch_index; |
| 250 | + } |
| 251 | + }; |
| 252 | + |
| 253 | + const int64_t num_cycles = |
| 254 | + 200 * (int64_t(1) << static_cast<int64_t>(max_num_qubits)); |
| 255 | + context->device()->tensorflow_cpu_worker_threads()->workers->ParallelFor( |
| 256 | + fused_circuits.size() * output_dim_op_size, num_cycles, DoWork); |
| 257 | + OP_REQUIRES_OK(context, compute_status); |
| 258 | + } |
| 259 | +}; |
| 260 | + |
| 261 | +REGISTER_KERNEL_BUILDER( |
| 262 | + Name("TfqSimulateExpectationOpCuQuantum").Device(tensorflow::DEVICE_CPU), |
| 263 | + TfqSimulateExpectationOpCuQuantumOp); |
| 264 | + |
| 265 | +REGISTER_OP("TfqSimulateExpectationOpCuQuantum") |
| 266 | + .Input("programs: string") |
| 267 | + .Input("symbol_names: string") |
| 268 | + .Input("symbol_values: float") |
| 269 | + .Input("pauli_sums: string") |
| 270 | + .Output("expectations: float") |
| 271 | + .SetShapeFn([](tensorflow::shape_inference::InferenceContext* c) { |
| 272 | + tensorflow::shape_inference::ShapeHandle programs_shape; |
| 273 | + TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &programs_shape)); |
| 274 | + |
| 275 | + tensorflow::shape_inference::ShapeHandle symbol_names_shape; |
| 276 | + TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &symbol_names_shape)); |
| 277 | + |
| 278 | + tensorflow::shape_inference::ShapeHandle symbol_values_shape; |
| 279 | + TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 2, &symbol_values_shape)); |
| 280 | + |
| 281 | + tensorflow::shape_inference::ShapeHandle pauli_sums_shape; |
| 282 | + TF_RETURN_IF_ERROR(c->WithRank(c->input(3), 2, &pauli_sums_shape)); |
| 283 | + |
| 284 | + tensorflow::shape_inference::DimensionHandle output_rows = |
| 285 | + c->Dim(programs_shape, 0); |
| 286 | + tensorflow::shape_inference::DimensionHandle output_cols = |
| 287 | + c->Dim(pauli_sums_shape, 1); |
| 288 | + c->set_output(0, c->Matrix(output_rows, output_cols)); |
| 289 | + |
| 290 | + return tensorflow::Status::OK(); |
| 291 | + }); |
| 292 | + |
| 293 | +} // namespace tfq |
0 commit comments