|
| 1 | +import os |
| 2 | +import tensorflow as tf |
| 3 | +import tensorflow_datasets as tfds |
| 4 | + |
| 5 | +from absl import flags |
| 6 | +from absl import app |
| 7 | +from tensorflow_recommenders_addons import dynamic_embedding as de |
| 8 | + |
| 9 | +flags.DEFINE_string('mode', 'train', 'Select the running mode: train or test.') |
| 10 | +flags.DEFINE_string('model_dir', 'model_dir', |
| 11 | + 'Directory where checkpoint stores.') |
| 12 | +flags.DEFINE_string('export_dir', 'export_dir', |
| 13 | + 'Directory where model stores for inference.') |
| 14 | +flags.DEFINE_integer('steps_per_epoch', 20000, 'Number of training steps.') |
| 15 | +flags.DEFINE_integer('epochs', 1, 'Number of training epochs.') |
| 16 | +flags.DEFINE_integer('embedding_size', 32, |
| 17 | + 'Embedding size for users and movies') |
| 18 | +flags.DEFINE_integer('test_steps', 128, 'Embedding size for users and movies') |
| 19 | +flags.DEFINE_integer('test_batch', 1024, 'Embedding size for users and movies') |
| 20 | +FLAGS = flags.FLAGS |
| 21 | + |
| 22 | +input_spec = { |
| 23 | + 'user_id': tf.TensorSpec(shape=[ |
| 24 | + None, |
| 25 | + ], dtype=tf.int64, name='user_id'), |
| 26 | + 'movie_id': tf.TensorSpec(shape=[ |
| 27 | + None, |
| 28 | + ], dtype=tf.int64, name='movie_id') |
| 29 | +} |
| 30 | + |
| 31 | + |
| 32 | +class DualChannelsDeepModel(tf.keras.Model): |
| 33 | + |
| 34 | + def __init__(self, |
| 35 | + user_embedding_size=1, |
| 36 | + movie_embedding_size=1, |
| 37 | + embedding_initializer=None, |
| 38 | + is_training=True): |
| 39 | + |
| 40 | + if not is_training: |
| 41 | + de.enable_inference_mode() |
| 42 | + |
| 43 | + super(DualChannelsDeepModel, self).__init__() |
| 44 | + self.user_embedding_size = user_embedding_size |
| 45 | + self.movie_embedding_size = movie_embedding_size |
| 46 | + |
| 47 | + if embedding_initializer is None: |
| 48 | + embedding_initializer = tf.keras.initializers.Zeros() |
| 49 | + |
| 50 | + self.user_embedding = de.keras.layers.SquashedEmbedding( |
| 51 | + user_embedding_size, |
| 52 | + initializer=embedding_initializer, |
| 53 | + name='user_embedding') |
| 54 | + self.movie_embedding = de.keras.layers.SquashedEmbedding( |
| 55 | + movie_embedding_size, |
| 56 | + initializer=embedding_initializer, |
| 57 | + name='movie_embedding') |
| 58 | + |
| 59 | + self.dnn1 = tf.keras.layers.Dense( |
| 60 | + 64, |
| 61 | + activation='relu', |
| 62 | + kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1), |
| 63 | + bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1)) |
| 64 | + self.dnn2 = tf.keras.layers.Dense( |
| 65 | + 16, |
| 66 | + activation='relu', |
| 67 | + kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1), |
| 68 | + bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1)) |
| 69 | + self.dnn3 = tf.keras.layers.Dense( |
| 70 | + 5, |
| 71 | + activation='softmax', |
| 72 | + kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1), |
| 73 | + bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1)) |
| 74 | + self.bias_net = tf.keras.layers.Dense( |
| 75 | + 5, |
| 76 | + activation='softmax', |
| 77 | + kernel_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1), |
| 78 | + bias_initializer=tf.keras.initializers.RandomNormal(0.0, 0.1)) |
| 79 | + |
| 80 | + @tf.function |
| 81 | + def call(self, features): |
| 82 | + user_id = tf.reshape(features['user_id'], (-1, 1)) |
| 83 | + movie_id = tf.reshape(features['movie_id'], (-1, 1)) |
| 84 | + user_latent = self.user_embedding(user_id) |
| 85 | + movie_latent = self.movie_embedding(movie_id) |
| 86 | + latent = tf.concat([user_latent, movie_latent], axis=1) |
| 87 | + |
| 88 | + x = self.dnn1(latent) |
| 89 | + x = self.dnn2(x) |
| 90 | + x = self.dnn3(x) |
| 91 | + |
| 92 | + bias = self.bias_net(latent) |
| 93 | + x = 0.2 * x + 0.8 * bias |
| 94 | + return x |
| 95 | + |
| 96 | + |
| 97 | +def get_dataset(batch_size=1): |
| 98 | + dataset = tfds.load('movielens/1m-ratings', split='train') |
| 99 | + features = dataset.map( |
| 100 | + lambda x: { |
| 101 | + "movie_id": tf.strings.to_number(x["movie_id"], tf.int64), |
| 102 | + "user_id": tf.strings.to_number(x["user_id"], tf.int64), |
| 103 | + }) |
| 104 | + ratings = dataset.map( |
| 105 | + lambda x: tf.one_hot(tf.cast(x['user_rating'] - 1, dtype=tf.int64), 5)) |
| 106 | + dataset = dataset.zip((features, ratings)) |
| 107 | + dataset = dataset.shuffle(4096, reshuffle_each_iteration=False) |
| 108 | + if batch_size > 1: |
| 109 | + dataset = dataset.batch(batch_size) |
| 110 | + |
| 111 | + return dataset |
| 112 | + |
| 113 | + |
| 114 | +def train(): |
| 115 | + dataset = get_dataset(batch_size=32) |
| 116 | + model = DualChannelsDeepModel(FLAGS.embedding_size, FLAGS.embedding_size, |
| 117 | + tf.keras.initializers.RandomNormal(0.0, 0.5)) |
| 118 | + optimizer = tf.keras.optimizers.Adam(1E-3) |
| 119 | + optimizer = de.DynamicEmbeddingOptimizer(optimizer) |
| 120 | + |
| 121 | + auc = tf.keras.metrics.AUC(num_thresholds=1000) |
| 122 | + model.compile(optimizer=optimizer, |
| 123 | + loss=tf.keras.losses.MeanSquaredError(), |
| 124 | + metrics=[ |
| 125 | + auc, |
| 126 | + ]) |
| 127 | + |
| 128 | + if os.path.exists(FLAGS.model_dir): |
| 129 | + model.load_weights(FLAGS.model_dir) |
| 130 | + |
| 131 | + model.fit(dataset, epochs=FLAGS.epochs, steps_per_epoch=FLAGS.steps_per_epoch) |
| 132 | + |
| 133 | + save_options = tf.saved_model.SaveOptions(namespace_whitelist=['TFRA']) |
| 134 | + model.save(FLAGS.model_dir, options=save_options) |
| 135 | + |
| 136 | + |
| 137 | +def export(): |
| 138 | + model = DualChannelsDeepModel(FLAGS.embedding_size, FLAGS.embedding_size, |
| 139 | + tf.keras.initializers.Zeros(), False) |
| 140 | + model.load_weights(FLAGS.model_dir) |
| 141 | + |
| 142 | + # Build input spec with dummy data. If the model is built with explicit |
| 143 | + # input specs, then no need of dummy data. |
| 144 | + dummy_data = { |
| 145 | + 'user_id': tf.zeros((16,), dtype=tf.int64), |
| 146 | + 'movie_id': tf.zeros([ |
| 147 | + 16, |
| 148 | + ], dtype=tf.int64) |
| 149 | + } |
| 150 | + model(dummy_data) |
| 151 | + |
| 152 | + save_options = tf.saved_model.SaveOptions(namespace_whitelist=['TFRA']) |
| 153 | + tf.keras.models.save_model( |
| 154 | + model, |
| 155 | + FLAGS.export_dir, |
| 156 | + options=save_options, |
| 157 | + include_optimizer=False, |
| 158 | + signatures=model.call.get_concrete_function(input_spec)) |
| 159 | + |
| 160 | + |
| 161 | +def test(): |
| 162 | + de.enable_inference_mode() |
| 163 | + |
| 164 | + dataset = get_dataset(batch_size=FLAGS.test_batch) |
| 165 | + model = tf.keras.models.load_model(FLAGS.export_dir) |
| 166 | + signature = model.signatures['serving_default'] |
| 167 | + |
| 168 | + def get_close_or_equal_cnt(model, features, ratings): |
| 169 | + preds = model(features) |
| 170 | + preds = tf.math.argmax(preds, axis=1) |
| 171 | + ratings = tf.math.argmax(ratings, axis=1) |
| 172 | + close_cnt = tf.reduce_sum( |
| 173 | + tf.cast(tf.math.abs(preds - ratings) <= 1, dtype=tf.int32)) |
| 174 | + equal_cnt = tf.reduce_sum( |
| 175 | + tf.cast(tf.math.abs(preds - ratings) == 0, dtype=tf.int32)) |
| 176 | + return close_cnt, equal_cnt |
| 177 | + |
| 178 | + it = iter(dataset) |
| 179 | + for step in range(FLAGS.test_steps): |
| 180 | + features, ratings = it.get_next() |
| 181 | + close_cnt, equal_cnt = get_close_or_equal_cnt(model, features, ratings) |
| 182 | + print( |
| 183 | + f'In batch prediction, step: {step}, {close_cnt}/{FLAGS.test_batch} are closely' |
| 184 | + f' accurate, {equal_cnt}/{FLAGS.test_batch} are absolutely accurate.') |
| 185 | + |
| 186 | + |
| 187 | +def main(argv): |
| 188 | + del argv |
| 189 | + if FLAGS.mode == 'train': |
| 190 | + train() |
| 191 | + elif FLAGS.mode == 'export': |
| 192 | + export() |
| 193 | + elif FLAGS.mode == 'test': |
| 194 | + test() |
| 195 | + else: |
| 196 | + raise ValueError('running mode only supports `train` or `test`') |
| 197 | + |
| 198 | + |
| 199 | +if __name__ == '__main__': |
| 200 | + app.run(main) |
0 commit comments