|
| 1 | +""" |
| 2 | +unit tests of save model that uses HvdAllToAllEmbedding |
| 3 | +""" |
| 4 | +from __future__ import absolute_import |
| 5 | +from __future__ import division |
| 6 | +from __future__ import print_function |
| 7 | + |
| 8 | +import os |
| 9 | +import shutil |
| 10 | +from time import sleep |
| 11 | + |
| 12 | +import tensorflow as tf |
| 13 | + |
| 14 | +from tensorflow_recommenders_addons import dynamic_embedding as de |
| 15 | + |
| 16 | +from tensorflow.python.framework import dtypes |
| 17 | +from tensorflow.python.framework.errors_impl import NotFoundError |
| 18 | +from tensorflow.python.ops import math_ops |
| 19 | +from tensorflow.python.platform import test |
| 20 | + |
| 21 | +try: |
| 22 | + from tf_keras import layers, Sequential, models, backend |
| 23 | + from tf_keras.initializers import Zeros |
| 24 | + from tf_keras.optimizers import Adam |
| 25 | +except: |
| 26 | + from tensorflow.keras import layers, Sequential, models, backend |
| 27 | + from tensorflow.keras.initializers import Zeros |
| 28 | + try: |
| 29 | + from tensorflow.keras.optimizers import Adam |
| 30 | + except: |
| 31 | + from tensorflow.keras.legacy.optimizers import Adam |
| 32 | + |
| 33 | + |
| 34 | +def get_all_to_all_emb_model(emb_t, opt, *args, **kwargs): |
| 35 | + l0 = layers.InputLayer(input_shape=(None,), dtype=dtypes.int64) |
| 36 | + l1 = emb_t(*args, **kwargs) |
| 37 | + l2 = layers.Dense(8, 'relu', kernel_initializer='zeros') |
| 38 | + l3 = layers.Dense(1, 'sigmoid', kernel_initializer='zeros') |
| 39 | + if emb_t == de.keras.layers.HvdAllToAllEmbedding: |
| 40 | + model = Sequential([l0, l1, l2, l3]) |
| 41 | + else: |
| 42 | + raise TypeError('Unsupported embedding layer {}'.format(emb_t)) |
| 43 | + |
| 44 | + model.compile(optimizer=opt, loss='mean_absolute_error') |
| 45 | + return model |
| 46 | + |
| 47 | + |
| 48 | +class HorovodAllToAllRestrictPolicyTest(test.TestCase): |
| 49 | + def test_all_to_all_embedding_restrict_policy_save(self): |
| 50 | + try: |
| 51 | + import horovod.tensorflow as hvd |
| 52 | + except (NotFoundError): |
| 53 | + self.skipTest( |
| 54 | + "Skip the test for horovod import error with Tensorflow-2.7.0 on MacOS-12." |
| 55 | + ) |
| 56 | + |
| 57 | + hvd.init() |
| 58 | + |
| 59 | + name = "all2all_emb" |
| 60 | + keras_base_opt = Adam(1.0) |
| 61 | + base_opt = de.DynamicEmbeddingOptimizer(keras_base_opt, synchronous=True) |
| 62 | + |
| 63 | + init = Zeros() |
| 64 | + kv_creator = de.CuckooHashTableCreator( |
| 65 | + saver=de.FileSystemSaver(proc_size=hvd.size(), proc_rank=hvd.rank())) |
| 66 | + batch_size = 8 |
| 67 | + start = 0 |
| 68 | + dim = 10 |
| 69 | + run_step = 10 |
| 70 | + |
| 71 | + save_dir = "/tmp/hvd_distributed_restrict_policy_save" + str( |
| 72 | + hvd.size()) + str( |
| 73 | + dim) # All ranks should share same save directory |
| 74 | + |
| 75 | + base_model = get_all_to_all_emb_model( |
| 76 | + de.keras.layers.HvdAllToAllEmbedding, |
| 77 | + base_opt, |
| 78 | + embedding_size=dim, |
| 79 | + initializer=init, |
| 80 | + bp_v2=False, |
| 81 | + kv_creator=kv_creator, |
| 82 | + restrict_policy=de.TimestampRestrictPolicy, # Embedding table with restrict policy |
| 83 | + name='all2all_emb') |
| 84 | + |
| 85 | + for i in range(1, run_step): |
| 86 | + x = math_ops.range(start, start + batch_size, dtype=dtypes.int64) |
| 87 | + x = tf.reshape(x, (batch_size, -1)) |
| 88 | + start += batch_size |
| 89 | + y = tf.zeros((batch_size, 1), dtype=dtypes.float32) |
| 90 | + base_model.fit(x, y, verbose=0) |
| 91 | + |
| 92 | + save_options = tf.saved_model.SaveOptions(namespace_whitelist=['TFRA']) |
| 93 | + if hvd.rank() == 0: |
| 94 | + if os.path.exists(save_dir): |
| 95 | + shutil.rmtree(save_dir) |
| 96 | + hvd.join() # Sync for avoiding files conflict |
| 97 | + base_model.save(save_dir, options=save_options) |
| 98 | + de.keras.models.save_model(base_model, save_dir, options=save_options) |
| 99 | + |
| 100 | + sleep(4) # Wait for filesystem operation |
| 101 | + hvd_size = hvd.size() |
| 102 | + if hvd_size <= 1: |
| 103 | + hvd_size = 1 |
| 104 | + base_dir = os.path.join(save_dir, "variables", "TFRADynamicEmbedding") |
| 105 | + for tag in ['keys', 'values']: |
| 106 | + for rank in range(hvd_size): |
| 107 | + self.assertTrue(os.path.exists( |
| 108 | + base_dir + |
| 109 | + f'/{name}-parameter_mht_1of1_rank{rank}_size{hvd_size}-{tag}')) |
| 110 | + self.assertTrue(os.path.exists( |
| 111 | + base_dir + |
| 112 | + f'/{name}-parameter_DynamicEmbedding_{name}-shadow_m_mht_1of1_rank{rank}_size{hvd_size}-{tag}' |
| 113 | + )) |
| 114 | + self.assertTrue(os.path.exists( |
| 115 | + base_dir + |
| 116 | + f'/{name}-parameter_DynamicEmbedding_{name}-shadow_v_mht_1of1_rank{rank}_size{hvd_size}-{tag}' |
| 117 | + )) |
| 118 | + # Restrict policy var saved for all ranks |
| 119 | + self.assertTrue(os.path.exists( |
| 120 | + base_dir + |
| 121 | + f'/{name}-parameter_timestamp_mht_1of1_rank{rank}_size{hvd_size}-{tag}')) |
| 122 | + |
| 123 | + |
| 124 | +if __name__ == "__main__": |
| 125 | + test.main() |
0 commit comments