|
| 1 | + |
| 2 | +MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: |
| 3 | + |
| 4 | +signature_def['__saved_model_init_op']: |
| 5 | + The given SavedModel SignatureDef contains the following input(s): |
| 6 | + The given SavedModel SignatureDef contains the following output(s): |
| 7 | + outputs['__saved_model_init_op'] tensor_info: |
| 8 | + dtype: DT_INVALID |
| 9 | + shape: unknown_rank |
| 10 | + name: NoOp |
| 11 | + Method name is: |
| 12 | + |
| 13 | +signature_def['serving_default']: |
| 14 | + The given SavedModel SignatureDef contains the following input(s): |
| 15 | + inputs['input_mask'] tensor_info: |
| 16 | + dtype: DT_INT32 |
| 17 | + shape: (-1, 384) |
| 18 | + name: serving_default_input_mask:0 |
| 19 | + inputs['input_type_ids'] tensor_info: |
| 20 | + dtype: DT_INT32 |
| 21 | + shape: (-1, 384) |
| 22 | + name: serving_default_input_type_ids:0 |
| 23 | + inputs['input_word_ids'] tensor_info: |
| 24 | + dtype: DT_INT32 |
| 25 | + shape: (-1, 384) |
| 26 | + name: serving_default_input_word_ids:0 |
| 27 | + The given SavedModel SignatureDef contains the following output(s): |
| 28 | + outputs['end_positions'] tensor_info: |
| 29 | + dtype: DT_FLOAT |
| 30 | + shape: (-1, 384) |
| 31 | + name: StatefulPartitionedCall:0 |
| 32 | + outputs['start_positions'] tensor_info: |
| 33 | + dtype: DT_FLOAT |
| 34 | + shape: (-1, 384) |
| 35 | + name: StatefulPartitionedCall:1 |
| 36 | + Method name is: tensorflow/serving/predict |
| 37 | + |
| 38 | +Defined Functions: |
| 39 | + Function Name: '__call__' |
| 40 | + Option #1 |
| 41 | + Callable with: |
| 42 | + Argument #1 |
| 43 | + DType: list |
| 44 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_word_ids'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_mask'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_type_ids'), ] |
| 45 | + Argument #2 |
| 46 | + DType: bool |
| 47 | + Value: True |
| 48 | + Argument #3 |
| 49 | + DType: NoneType |
| 50 | + Value: None |
| 51 | + Option #2 |
| 52 | + Callable with: |
| 53 | + Argument #1 |
| 54 | + DType: list |
| 55 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/0'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/1'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/2'), ] |
| 56 | + Argument #2 |
| 57 | + DType: bool |
| 58 | + Value: True |
| 59 | + Argument #3 |
| 60 | + DType: NoneType |
| 61 | + Value: None |
| 62 | + Option #3 |
| 63 | + Callable with: |
| 64 | + Argument #1 |
| 65 | + DType: list |
| 66 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_word_ids'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_mask'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_type_ids'), ] |
| 67 | + Argument #2 |
| 68 | + DType: bool |
| 69 | + Value: False |
| 70 | + Argument #3 |
| 71 | + DType: NoneType |
| 72 | + Value: None |
| 73 | + Option #4 |
| 74 | + Callable with: |
| 75 | + Argument #1 |
| 76 | + DType: list |
| 77 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/0'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/1'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/2'), ] |
| 78 | + Argument #2 |
| 79 | + DType: bool |
| 80 | + Value: False |
| 81 | + Argument #3 |
| 82 | + DType: NoneType |
| 83 | + Value: None |
| 84 | + |
| 85 | + Function Name: '_default_save_signature' |
| 86 | + Option #1 |
| 87 | + Callable with: |
| 88 | + Argument #1 |
| 89 | + DType: list |
| 90 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_word_ids'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_mask'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_type_ids'), ] |
| 91 | + |
| 92 | + Function Name: 'call_and_return_all_conditional_losses' |
| 93 | + Option #1 |
| 94 | + Callable with: |
| 95 | + Argument #1 |
| 96 | + DType: list |
| 97 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/0'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/1'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/2'), ] |
| 98 | + Argument #2 |
| 99 | + DType: bool |
| 100 | + Value: True |
| 101 | + Argument #3 |
| 102 | + DType: NoneType |
| 103 | + Value: None |
| 104 | + Option #2 |
| 105 | + Callable with: |
| 106 | + Argument #1 |
| 107 | + DType: list |
| 108 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/0'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/1'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='inputs/2'), ] |
| 109 | + Argument #2 |
| 110 | + DType: bool |
| 111 | + Value: False |
| 112 | + Argument #3 |
| 113 | + DType: NoneType |
| 114 | + Value: None |
| 115 | + Option #3 |
| 116 | + Callable with: |
| 117 | + Argument #1 |
| 118 | + DType: list |
| 119 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_word_ids'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_mask'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_type_ids'), ] |
| 120 | + Argument #2 |
| 121 | + DType: bool |
| 122 | + Value: True |
| 123 | + Argument #3 |
| 124 | + DType: NoneType |
| 125 | + Value: None |
| 126 | + Option #4 |
| 127 | + Callable with: |
| 128 | + Argument #1 |
| 129 | + DType: list |
| 130 | + Value: [TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_word_ids'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_mask'), TensorSpec(shape=(None, 384), dtype=tf.int32, name='input_type_ids'), ] |
| 131 | + Argument #2 |
| 132 | + DType: bool |
| 133 | + Value: False |
| 134 | + Argument #3 |
| 135 | + DType: NoneType |
| 136 | + Value: None |
0 commit comments