|
| 1 | +#! /usr/bin/python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | +from onnx import helper, numpy_helper |
| 5 | +from ..op_mapper import OpMapper |
| 6 | +from ...common import make_node, to_numpy |
| 7 | +from ..datatype_mapping import NP_TYPE_TO_TENSOR_TYPE |
| 8 | +from ...common import tlx_act_2_onnx, convert_padding, make_shape_channels_first, convert_w, \ |
| 9 | + get_channels_last_permutation, get_channels_first_permutation |
| 10 | + |
| 11 | +@OpMapper(['MaskedConv3d']) |
| 12 | +class MaskedConv3d(): |
| 13 | + # supports v1-v12 |
| 14 | + |
| 15 | + @classmethod |
| 16 | + def version_1(cls, node, **kwargs): |
| 17 | + onnx_node = [] |
| 18 | + onnx_value = [] |
| 19 | + onnx_init = [] |
| 20 | + |
| 21 | + x = node['in_nodes_name'][0] |
| 22 | + x_shape = node['in_tensors'][0] |
| 23 | + out_shape = node['out_tensors'][0] |
| 24 | + spatial = int(node['node'].layer.__class__.__name__[-2]) |
| 25 | + |
| 26 | + # make weights |
| 27 | + y = node['node'].layer.name + '/kernel' |
| 28 | + weights_value = node['node'].layer.masked_kernel |
| 29 | + |
| 30 | + attr_dict = {} |
| 31 | + attr_dict['dilations'] = dilations = node['attr']['dilation'] |
| 32 | + attr_dict['kernel_shape'] = kernel_shape = node['attr']['kernel_size'] |
| 33 | + attr_dict['strides'] = strides = node['attr']['stride'] |
| 34 | + pads = node['attr']['padding'] |
| 35 | + data_format = node['attr']['data_format'] |
| 36 | + |
| 37 | + if data_format == 'channels_last': |
| 38 | + # channels last conver weights and input |
| 39 | + x_shape_temp = make_shape_channels_first(x_shape) |
| 40 | + out_temp_shape = make_shape_channels_first(out_shape) |
| 41 | + weights = convert_w(weights_value, data_format, spatial, y) |
| 42 | + onnx_init.append(weights) |
| 43 | + t_x = helper.make_tensor_value_info(node['in_nodes_name'][0] + 't', NP_TYPE_TO_TENSOR_TYPE[node['dtype']], shape=x_shape_temp) |
| 44 | + onnx_value.append(t_x) |
| 45 | + tx_node, x = make_node('Transpose', inputs=[x], outputs=[node['in_nodes_name'][0] + 't'], perm=get_channels_first_permutation(spatial)) |
| 46 | + onnx_node.append(tx_node) |
| 47 | + else: |
| 48 | + # Build weights |
| 49 | + weights = numpy_helper.from_array(arr=to_numpy(weights_value), name=y) |
| 50 | + onnx_init.append(weights) |
| 51 | + |
| 52 | + # Build padding |
| 53 | + pads = convert_padding( |
| 54 | + pads, x_shape, out_shape, kernel_shape, strides, |
| 55 | + dilations, spatial, data_format |
| 56 | + ) |
| 57 | + if isinstance(pads, str): |
| 58 | + attr_dict["auto_pad"] = pads |
| 59 | + else: |
| 60 | + attr_dict["pads"] = pads |
| 61 | + |
| 62 | + if node['node'].layer.b_init is not None: |
| 63 | + b = numpy_helper.from_array(arr=to_numpy(node['node'].layer.bias), name=node['node'].layer.name + '/b') |
| 64 | + onnx_init.append(b) |
| 65 | + b_name = node['node'].layer.name + '/b' |
| 66 | + input_list = [x, y, b_name] |
| 67 | + else: |
| 68 | + input_list = [x, y] |
| 69 | + |
| 70 | + if data_format == 'channels_first': |
| 71 | + if node['node'].layer.act is not None: |
| 72 | + # Build Conv3d |
| 73 | + de_v = helper.make_tensor_value_info(node['out_nodes_name'][0] + 'de', NP_TYPE_TO_TENSOR_TYPE[node['dtype']], |
| 74 | + shape=out_shape) |
| 75 | + onnx_value.append(de_v) |
| 76 | + ct_node, out = make_node('Conv', inputs=input_list, |
| 77 | + outputs=[node['out_nodes_name'][0] + 'de'], **attr_dict) |
| 78 | + onnx_node.append(ct_node) |
| 79 | + |
| 80 | + act_op = node['node'].layer.act.__class__.__name__ |
| 81 | + out_v = helper.make_tensor_value_info(node['out_nodes_name'][0], NP_TYPE_TO_TENSOR_TYPE[node['dtype']], |
| 82 | + shape=out_shape) |
| 83 | + onnx_value.append(out_v) |
| 84 | + # Using Opmapper |
| 85 | + act_node, _ = tlx_act_2_onnx[act_op]([out], node['out_nodes_name'], node['node'].layer.act) |
| 86 | + onnx_node.append(act_node) |
| 87 | + else: |
| 88 | + out_v = helper.make_tensor_value_info(node['out_nodes_name'][0], NP_TYPE_TO_TENSOR_TYPE[node['dtype']], |
| 89 | + shape=out_shape) # |
| 90 | + onnx_value.append(out_v) |
| 91 | + ct_node, out = make_node('Conv', inputs=input_list, |
| 92 | + outputs=node['out_nodes_name'], **attr_dict) |
| 93 | + onnx_node.append(ct_node) |
| 94 | + elif data_format == 'channels_last': |
| 95 | + if node['node'].layer.act is not None: |
| 96 | + # Build Conv |
| 97 | + ct_v = helper.make_tensor_value_info(node['out_nodes_name'][0] + 'ct', NP_TYPE_TO_TENSOR_TYPE[node['dtype']], |
| 98 | + shape=out_temp_shape) |
| 99 | + onnx_value.append(ct_v) |
| 100 | + ct_node, out = make_node('Conv', inputs=input_list, |
| 101 | + outputs=[node['out_nodes_name'][0] + 'ct'], **attr_dict) |
| 102 | + onnx_node.append(ct_node) |
| 103 | + |
| 104 | + act_op = node['node'].layer.act.__class__.__name__ |
| 105 | + act_v = helper.make_tensor_value_info(node['out_nodes_name'][0] + 'a', NP_TYPE_TO_TENSOR_TYPE[node['dtype']], |
| 106 | + shape=out_temp_shape) |
| 107 | + onnx_value.append(act_v) |
| 108 | + # Using Opmapper |
| 109 | + act_node, out = tlx_act_2_onnx[act_op]([out], [node['out_nodes_name'][0] + 'a'], node['node'].layer.act) |
| 110 | + onnx_node.append(act_node) |
| 111 | + else: |
| 112 | + out_v = helper.make_tensor_value_info(node['out_nodes_name'][0] + 'ct', NP_TYPE_TO_TENSOR_TYPE[node['dtype']], |
| 113 | + shape=out_temp_shape) |
| 114 | + onnx_value.append(out_v) |
| 115 | + o_node, out = make_node('Conv', inputs=input_list, |
| 116 | + outputs=[node['out_nodes_name'][0] + 'ct'], **attr_dict) |
| 117 | + onnx_node.append(o_node) |
| 118 | + |
| 119 | + t_out = helper.make_tensor_value_info(node['out_nodes_name'][0], NP_TYPE_TO_TENSOR_TYPE[node['dtype']], shape=out_shape) |
| 120 | + onnx_value.append(t_out) |
| 121 | + tout_node, _ = make_node('Transpose', inputs=[out], outputs=node['out_nodes_name'], perm=get_channels_last_permutation(spatial)) |
| 122 | + onnx_node.append(tout_node) |
| 123 | + else: |
| 124 | + raise ValueError("Only support 'channels_first' or 'channels_last' data_format mode, but got {}.".format(data_format)) |
| 125 | + |
| 126 | + return onnx_node, onnx_value, onnx_init |
| 127 | + |
| 128 | + |
0 commit comments