@@ -30,7 +30,7 @@ def load_mnist_dataset(shape=(-1,784), path="data/mnist/"):
3030 shape : tuple
3131 The shape of digit images, defaults is (-1,784)
3232 path : string
33- The path that the data is downloaded to, defaults is data/mnist/
33+ The path that the data is downloaded to, defaults is `` data/mnist/``.
3434
3535 Examples
3636 --------
@@ -102,7 +102,7 @@ def load_cifar10_dataset(shape=(-1, 32, 32, 3), path='data/cifar10/', plotable=F
102102 second : int
103103 If ``plotable`` is True, ``second`` is the display time.
104104 path : string
105- The path that the data is downloaded to, defaults is data/cifar10/
105+ The path that the data is downloaded to, defaults is `` data/cifar10/``.
106106
107107 Examples
108108 --------
@@ -221,35 +221,13 @@ def load_ptb_dataset(path='data/ptb/'):
221221 """Penn TreeBank (PTB) dataset is used in many LANGUAGE MODELING papers,
222222 including "Empirical Evaluation and Combination of Advanced Language
223223 Modeling Techniques", "Recurrent Neural Network Regularization".
224-
225224 It consists of 929k training words, 73k validation words, and 82k test
226225 words. It has 10k words in its vocabulary.
227226
228- In "Recurrent Neural Network Regularization", they trained regularized LSTMs
229- of two sizes; these are denoted the medium LSTM and large LSTM. Both LSTMs
230- have two layers and are unrolled for 35 steps. They initialize the hidden
231- states to zero. They then use the final hidden states of the current
232- minibatch as the initial hidden state of the subsequent minibatch
233- (successive minibatches sequentially traverse the training set).
234- The size of each minibatch is 20.
235-
236- The medium LSTM has 650 units per layer and its parameters are initialized
237- uniformly in [−0.05, 0.05]. They apply 50% dropout on the non-recurrent
238- connections. They train the LSTM for 39 epochs with a learning rate of 1,
239- and after 6 epochs they decrease it by a factor of 1.2 after each epoch.
240- They clip the norm of the gradients (normalized by minibatch size) at 5.
241-
242- The large LSTM has 1500 units per layer and its parameters are initialized
243- uniformly in [−0.04, 0.04]. We apply 65% dropout on the non-recurrent
244- connections. They train the model for 55 epochs with a learning rate of 1;
245- after 14 epochs they start to reduce the learning rate by a factor of 1.15
246- after each epoch. They clip the norm of the gradients (normalized by
247- minibatch size) at 10.
248-
249227 Parameters
250228 ----------
251229 path : : string
252- The path that the data is downloaded to, defaults is data/ptb/
230+ The path that the data is downloaded to, defaults is `` data/ptb/``.
253231
254232 Returns
255233 --------
@@ -302,7 +280,7 @@ def load_matt_mahoney_text8_dataset(path='data/mm_test8/'):
302280 Parameters
303281 ----------
304282 path : : string
305- The path that the data is downloaded to, defaults is data/mm_test8/
283+ The path that the data is downloaded to, defaults is `` data/mm_test8/``.
306284
307285 Returns
308286 --------
@@ -336,7 +314,7 @@ def load_imdb_dataset(path='data/imdb/', nb_words=None, skip_top=0,
336314 Parameters
337315 ----------
338316 path : : string
339- The path that the data is downloaded to, defaults is data/imdb/
317+ The path that the data is downloaded to, defaults is `` data/imdb/``.
340318
341319 Examples
342320 --------
@@ -419,7 +397,7 @@ def load_nietzsche_dataset(path='data/nietzsche/'):
419397 Parameters
420398 ----------
421399 path : string
422- The path that the data is downloaded to, defaults is data/nietzsche/
400+ The path that the data is downloaded to, defaults is `` data/nietzsche/``.
423401
424402 Examples
425403 --------
@@ -447,7 +425,7 @@ def load_wmt_en_fr_dataset(path='data/wmt_en_fr/'):
447425 Parameters
448426 ----------
449427 path : string
450- The path that the data is downloaded to, defaults is data/wmt_en_fr/
428+ The path that the data is downloaded to, defaults is `` data/wmt_en_fr/``.
451429
452430 References
453431 ----------
@@ -515,7 +493,7 @@ def load_flickr25k_dataset(tag='sky', path="data/flickr25k", n_threads=50, print
515493 path : string
516494 The path that the data is downloaded to, defaults is ``data/flickr25k/``.
517495 n_threads : int, number of thread to read image.
518- printable : bool, print infomation when reading images, default is False.
496+ printable : bool, print infomation when reading images, default is `` False`` .
519497
520498 Examples
521499 -----------
@@ -575,7 +553,7 @@ def load_flickr1M_dataset(tag='sky', size=10, path="data/flickr1M", n_threads=50
575553 path : string
576554 The path that the data is downloaded to, defaults is ``data/flickr25k/``.
577555 n_threads : int, number of thread to read image.
578- printable : bool, print infomation when reading images, default is False.
556+ printable : bool, print infomation when reading images, default is `` False`` .
579557
580558 Examples
581559 ----------
0 commit comments