|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +__doc__ = """ |
| 4 | +
|
| 5 | +This demo implements FastText[1] for sentence classification. FastText is a |
| 6 | +simple model for text classification with performance often close to |
| 7 | +state-of-the-art, and is useful as a solid baseline. |
| 8 | +
|
| 9 | +There are some important differences between this implementation and what |
| 10 | +is described in the paper. Instead of Hogwild! SGD[2], we use Adam optimizer |
| 11 | +with mini-batches. Hierarchical softmax is also not supported; if you have |
| 12 | +a large label space, consider utilizing candidate sampling methods provided |
| 13 | +by TensorFlow[3]. |
| 14 | +
|
| 15 | +After 5 epochs, you should get test accuracy close to 90.9%. |
| 16 | +
|
| 17 | +[1] Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). |
| 18 | + Bag of Tricks for Efficient Text Classification. |
| 19 | + http://arxiv.org/abs/1607.01759 |
| 20 | +
|
| 21 | +[2] Recht, B., Re, C., Wright, S., & Niu, F. (2011). |
| 22 | + Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. |
| 23 | + In Advances in Neural Information Processing Systems 24 (pp. 693–701). |
| 24 | +
|
| 25 | +[3] https://www.tensorflow.org/api_guides/python/nn#Candidate_Sampling |
| 26 | +
|
| 27 | +""" |
| 28 | + |
| 29 | +import array |
| 30 | +import hashlib |
| 31 | +import time |
| 32 | + |
| 33 | +import tensorflow as tf |
| 34 | +import tensorlayer as tl |
| 35 | +import numpy as np |
| 36 | + |
| 37 | + |
| 38 | +# Hashed n-grams with 1 < n <= N_GRAM are included as features |
| 39 | +# in addition to unigrams. |
| 40 | +N_GRAM = 2 |
| 41 | + |
| 42 | +# Size of vocabulary; less frequent works will be treated as "unknown" |
| 43 | +VOCAB_SIZE = 100000 |
| 44 | + |
| 45 | +# Number of buckets used for hashing n-grams |
| 46 | +N_BUCKETS = 1000000 |
| 47 | + |
| 48 | +# Size of the embedding vectors |
| 49 | +EMBEDDING_SIZE = 50 |
| 50 | + |
| 51 | +# Number of epochs for which the model is trained |
| 52 | +N_EPOCH = 5 |
| 53 | + |
| 54 | +# Size of training mini-batches |
| 55 | +BATCH_SIZE = 32 |
| 56 | + |
| 57 | +# Path to which to save the trained model |
| 58 | +MODEL_FILE_PATH = 'model.npz' |
| 59 | + |
| 60 | + |
| 61 | +class FastTestEmbeddingInputLayer(tl.layers.Layer): |
| 62 | + def __init__( |
| 63 | + self, inputs, vocabulary_size, embedding_size, |
| 64 | + name='fasttext_layer', |
| 65 | + embeddings_initializer=tf.random_uniform_initializer(-0.1, 0.1), |
| 66 | + embeddings_kwargs=None): |
| 67 | + """FastText Embedding input layer for sentences. |
| 68 | +
|
| 69 | + :param inputs: input placeholder or tensor; zeros are paddings |
| 70 | + :param vocabulary_size: and integer, the size of vocabulary |
| 71 | + :param embedding_size: and integer, the dimension of embedding vectors |
| 72 | + :param name: a string, the name of the layer |
| 73 | + :param embeddings_initializer: the initializer of the embedding matrix |
| 74 | + :param embeddings_kwargs: kwargs to get embedding matrix variable |
| 75 | + """ |
| 76 | + super().__init__(name=name) |
| 77 | + |
| 78 | + if inputs.get_shape().ndims != 2: |
| 79 | + raise ValueError( |
| 80 | + 'inputs must be of size batch_size * batch_sentence_length') |
| 81 | + |
| 82 | + self.inputs = inputs |
| 83 | + |
| 84 | + print(f" [TL] FastTestEmbeddingInputLayer {self.name}:" |
| 85 | + f" ({vocabulary_size}, {embedding_size})") |
| 86 | + |
| 87 | + with tf.variable_scope(name): |
| 88 | + self.embeddings = tf.get_variable( |
| 89 | + name='embeddings', |
| 90 | + shape=(vocabulary_size, embedding_size), |
| 91 | + initializer=embeddings_initializer, |
| 92 | + **(embeddings_kwargs or {}), |
| 93 | + ) |
| 94 | + word_embeddings = tf.nn.embedding_lookup( |
| 95 | + self.embeddings, self.inputs, |
| 96 | + name='word_embeddings', |
| 97 | + ) |
| 98 | + |
| 99 | + # Masks used to ignore padding words |
| 100 | + masks = tf.expand_dims( |
| 101 | + tf.sign(self.inputs), |
| 102 | + axis=-1, |
| 103 | + name='masks', |
| 104 | + ) |
| 105 | + sum_word_embeddings = tf.reduce_sum( |
| 106 | + word_embeddings * tf.cast(masks, tf.float32), |
| 107 | + axis=1, |
| 108 | + ) |
| 109 | + |
| 110 | + # Count number of non-padding words in each sentence |
| 111 | + # Used to commute average word embeddings in sentences |
| 112 | + sentence_lengths = tf.count_nonzero( |
| 113 | + self.inputs, |
| 114 | + axis=1, |
| 115 | + keep_dims=True, |
| 116 | + dtype=tf.float32, |
| 117 | + name='sentence_lengths', |
| 118 | + ) |
| 119 | + |
| 120 | + sentence_embeddings = tf.divide( |
| 121 | + sum_word_embeddings, |
| 122 | + sentence_lengths, |
| 123 | + name='sentence_embeddings' |
| 124 | + ) |
| 125 | + |
| 126 | + self.outputs = sentence_embeddings |
| 127 | + self.all_layers = [self.outputs] |
| 128 | + self.all_params = [self.embeddings] |
| 129 | + self.all_drop = {} |
| 130 | + |
| 131 | + |
| 132 | +class FastTextClassifier(object): |
| 133 | + """Simple wrapper class for creating the graph of FastText classifier.""" |
| 134 | + def __init__(self, vocab_size, embedding_size, n_labels): |
| 135 | + self.vocab_size = vocab_size |
| 136 | + self.embedding_size = embedding_size |
| 137 | + self.n_labels = n_labels |
| 138 | + |
| 139 | + self.inputs = tf.placeholder( |
| 140 | + tf.int32, shape=[None, None], name='inputs') |
| 141 | + self.labels = tf.placeholder( |
| 142 | + tf.int32, shape=[None], name='labels') |
| 143 | + |
| 144 | + # Network structure |
| 145 | + network = FastTestEmbeddingInputLayer( |
| 146 | + self.inputs, self.vocab_size, self.embedding_size) |
| 147 | + self.network = tl.layers.DenseLayer(network, self.n_labels) |
| 148 | + |
| 149 | + # Training operation |
| 150 | + cost = tl.cost.cross_entropy( |
| 151 | + self.network.outputs, |
| 152 | + self.labels, |
| 153 | + name='cost' |
| 154 | + ) |
| 155 | + self.train_op = tf.train.AdamOptimizer().minimize(cost) |
| 156 | + |
| 157 | + # Predictions |
| 158 | + self.prediction_probs = tf.nn.softmax(self.network.outputs) |
| 159 | + self.predictions = tf.argmax( |
| 160 | + self.network.outputs, axis=1, output_type=tf.int32) |
| 161 | + |
| 162 | + # Evaluation |
| 163 | + are_predictions_correct = tf.equal(self.predictions, self.labels) |
| 164 | + self.accuracy = tf.reduce_mean( |
| 165 | + tf.cast(are_predictions_correct, tf.float32)) |
| 166 | + |
| 167 | + def save(self, sess, filename): |
| 168 | + tl.files.save_npz(self.network.all_params, name=filename, sess=sess) |
| 169 | + |
| 170 | + def load(self, sess, filename): |
| 171 | + tl.files.load_and_assign_npz(sess, name=filename, network=self.network) |
| 172 | + |
| 173 | + |
| 174 | +def augment_with_ngrams(unigrams, unigram_vocab_size, n_buckets, n=2): |
| 175 | + """Augment unigram features with hashed n-gram features.""" |
| 176 | + def get_ngrams(n): |
| 177 | + return list(zip(*[ |
| 178 | + unigrams[i:] |
| 179 | + for i in range(n) |
| 180 | + ])) |
| 181 | + |
| 182 | + def hash_ngram(ngram): |
| 183 | + bytes_ = array.array('L', ngram).tobytes() |
| 184 | + hash_ = int(hashlib.sha256(bytes_).hexdigest(), 16) |
| 185 | + return unigram_vocab_size + hash_ % n_buckets |
| 186 | + |
| 187 | + return unigrams + [ |
| 188 | + hash_ngram(ngram) |
| 189 | + for i in range(2, n + 1) |
| 190 | + for ngram in get_ngrams(i) |
| 191 | + ] |
| 192 | + |
| 193 | + |
| 194 | +def load_and_preprocess_imdb_data(n_gram=None): |
| 195 | + """Load IMDb data and augment with hashed n-gram features.""" |
| 196 | + X_train, y_train, X_test, y_test = \ |
| 197 | + tl.files.load_imdb_dataset(nb_words=VOCAB_SIZE) |
| 198 | + |
| 199 | + if n_gram is not None: |
| 200 | + X_train = np.array([ |
| 201 | + augment_with_ngrams(x, VOCAB_SIZE, N_BUCKETS, n=n_gram) |
| 202 | + for x in X_train |
| 203 | + ]) |
| 204 | + X_test = np.array([ |
| 205 | + augment_with_ngrams(x, VOCAB_SIZE, N_BUCKETS, n=n_gram) |
| 206 | + for x in X_test |
| 207 | + ]) |
| 208 | + |
| 209 | + return X_train, y_train, X_test, y_test |
| 210 | + |
| 211 | + |
| 212 | +def train_test_and_save_model(): |
| 213 | + X_train, y_train, X_test, y_test = load_and_preprocess_imdb_data(N_GRAM) |
| 214 | + classifier = FastTextClassifier( |
| 215 | + vocab_size=VOCAB_SIZE + N_BUCKETS, |
| 216 | + embedding_size=EMBEDDING_SIZE, |
| 217 | + n_labels=2, |
| 218 | + ) |
| 219 | + |
| 220 | + with tf.Session() as sess: |
| 221 | + tl.layers.initialize_global_variables(sess) |
| 222 | + |
| 223 | + for epoch in range(N_EPOCH): |
| 224 | + start_time = time.time() |
| 225 | + print(f'Epoch {epoch + 1}/{N_EPOCH}', end='') |
| 226 | + for X_batch, y_batch in tl.iterate.minibatches( |
| 227 | + X_train, y_train, batch_size=BATCH_SIZE, shuffle=True): |
| 228 | + sess.run(classifier.train_op, feed_dict={ |
| 229 | + classifier.inputs: tl.prepro.pad_sequences(X_batch), |
| 230 | + classifier.labels: y_batch, |
| 231 | + }) |
| 232 | + |
| 233 | + print(f'\t{time.time() - start_time:.2f}s') |
| 234 | + |
| 235 | + test_accuracy = sess.run(classifier.accuracy, feed_dict={ |
| 236 | + classifier.inputs: tl.prepro.pad_sequences(X_test), |
| 237 | + classifier.labels: y_test, |
| 238 | + }) |
| 239 | + print(f'Test accuracy: {test_accuracy:.5f}') |
| 240 | + |
| 241 | + classifier.save(sess, MODEL_FILE_PATH) |
| 242 | + |
| 243 | + |
| 244 | +if __name__ == '__main__': |
| 245 | + train_test_and_save_model() |
0 commit comments