|
| 1 | +#! /usr/bin/python |
| 2 | +# -*- coding: utf8 -*- |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import tensorflow as tf |
| 6 | +import tensorlayer as tl |
| 7 | +import time |
| 8 | +from keras import backend as K |
| 9 | +from keras.layers import * |
| 10 | +from tensorlayer.layers import * |
| 11 | + |
| 12 | +X_train, y_train, X_val, y_val, X_test, y_test = \ |
| 13 | + tl.files.load_mnist_dataset(shape=(-1, 784)) |
| 14 | + |
| 15 | +sess = tf.InteractiveSession() |
| 16 | + |
| 17 | +batch_size = 128 |
| 18 | +x = tf.placeholder(tf.float32, shape=[None, 784]) |
| 19 | +y_ = tf.placeholder(tf.int64, shape=[None,]) |
| 20 | + |
| 21 | +def keras_block(x, is_train=True): |
| 22 | + x = Dropout(0.8)(x) |
| 23 | + x = Dense(800, activation='relu')(x) |
| 24 | + x = Dropout(0.5)(x) |
| 25 | + x = Dense(800, activation='relu')(x) |
| 26 | + x = Dropout(0.5)(x) |
| 27 | + logits = Dense(10, activation='linear')(x) |
| 28 | + return logits |
| 29 | + |
| 30 | +network = InputLayer(x, name='input') |
| 31 | +network = KerasLayer(network, keras_layer=keras_block, name='keras') |
| 32 | + |
| 33 | +y = network.outputs |
| 34 | +network.print_params(False) |
| 35 | +network.print_layers() |
| 36 | + |
| 37 | +cost = tl.cost.cross_entropy(y, y_, 'cost') |
| 38 | +correct_prediction = tf.equal(tf.argmax(y, 1), y_) |
| 39 | +acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) |
| 40 | + |
| 41 | +n_epoch = 200 |
| 42 | +learning_rate = 0.0001 |
| 43 | + |
| 44 | +train_params = network.all_params |
| 45 | +train_op = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, |
| 46 | + epsilon=1e-08, use_locking=False).minimize(cost, var_list=train_params) |
| 47 | + |
| 48 | +tl.layers.initialize_global_variables(sess) |
| 49 | + |
| 50 | +for epoch in range(n_epoch): |
| 51 | + start_time = time.time() |
| 52 | + ## Training |
| 53 | + for X_train_a, y_train_a in tl.iterate.minibatches( |
| 54 | + X_train, y_train, batch_size, shuffle=True): |
| 55 | + _, _ = sess.run([cost, train_op], feed_dict={x: X_train_a, y_: y_train_a, |
| 56 | + K.learning_phase(): 1}) |
| 57 | + |
| 58 | + print("Epoch %d of %d took %fs" % (epoch + 1, n_epoch, time.time() - start_time)) |
| 59 | + ## Evaluation |
| 60 | + train_loss, train_acc, n_batch = 0, 0, 0 |
| 61 | + for X_train_a, y_train_a in tl.iterate.minibatches( |
| 62 | + X_train, y_train, batch_size, shuffle=False): |
| 63 | + err, ac = sess.run([cost, acc], feed_dict={x: X_train_a, y_: y_train_a, |
| 64 | + K.learning_phase(): 0}) |
| 65 | + train_loss += err; train_acc += ac; n_batch += 1 |
| 66 | + print(" train loss: %f" % (train_loss/ n_batch)) |
| 67 | + print(" train acc: %f" % (train_acc/ n_batch)) |
| 68 | + val_loss, val_acc, n_batch = 0, 0, 0 |
| 69 | + for X_val_a, y_val_a in tl.iterate.minibatches( |
| 70 | + X_val, y_val, batch_size, shuffle=False): |
| 71 | + err, ac = sess.run([cost, acc], feed_dict={x: X_val_a, y_: y_val_a, |
| 72 | + K.learning_phase(): 0}) |
| 73 | + val_loss += err; val_acc += ac; n_batch += 1 |
| 74 | + print(" val loss: %f" % (val_loss/ n_batch)) |
| 75 | + print(" val acc: %f" % (val_acc/ n_batch)) |
0 commit comments