@@ -532,7 +532,7 @@ def swirl_multi(x, center=None, strength=1, radius=100, rotation=0, output_shape
532532from scipy .ndimage .interpolation import map_coordinates
533533from scipy .ndimage .filters import gaussian_filter
534534def elastic_transform (x , alpha , sigma , mode = "constant" , cval = 0 , is_random = False ):
535- """Elastic deformation of images as described in ` [Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`_.
535+ """Elastic deformation of images as described in ` [Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`_ .
536536
537537 Parameters
538538 -----------
@@ -717,7 +717,8 @@ def brightness(x, gamma=1, gain=1, is_random=False):
717717 An image with dimension of [row, col, channel] (default).
718718 gamma : float, small than 1 means brighter.
719719 Non negative real number. Default value is 1.
720- - If is_random is True, gamma in a range of (1-gamma, 1+gamma).
720+
721+ - If is_random is True, gamma in a range of (1-gamma, 1+gamma).
721722 gain : float
722723 The constant multiplier. Default value is 1.
723724 is_random : boolean, default False
@@ -775,9 +776,9 @@ def imresize(x, size=[100, 100], interp='bilinear', mode=None):
775776 - float, Fraction of current size.
776777 - tuple, Size of the output image.
777778 interp : str, optional
778- Interpolation to use for re-sizing (‘nearest’, ‘lanczos’, ‘bilinear’, ‘bicubic’ or ‘cubic’).
779+ Interpolation to use for re-sizing (‘nearest’, ‘lanczos’, ‘bilinear’, ‘bicubic’ or ‘cubic’).
779780 mode : str, optional
780- The PIL image mode (‘P’, ‘L’, etc.) to convert arr before resizing.
781+ The PIL image mode (‘P’, ‘L’, etc.) to convert arr before resizing.
781782
782783 Returns
783784 --------
@@ -1046,12 +1047,13 @@ def projective_transform_by_points(x, src, dst, map_args={}, output_shape=None,
10461047 Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.
10471048 order : int, optional
10481049 The order of interpolation. The order has to be in the range 0-5:
1049- - 0 Nearest-neighbor
1050- - 1 Bi-linear (default)
1051- - 2 Bi-quadratic
1052- - 3 Bi-cubic
1053- - 4 Bi-quartic
1054- - 5 Bi-quintic
1050+
1051+ - 0 Nearest-neighbor
1052+ - 1 Bi-linear (default)
1053+ - 2 Bi-quadratic
1054+ - 3 Bi-cubic
1055+ - 4 Bi-quartic
1056+ - 5 Bi-quintic
10551057 mode : {‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional
10561058 Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.
10571059 cval : float, optional
@@ -1298,7 +1300,7 @@ def crop_central_whiten_images(images=None, height=24, width=24):
12981300 The tensor or placeholder of images
12991301 height : int
13001302 The height for central crop.
1301- width: int
1303+ width : int
13021304 The width for central crop.
13031305
13041306 Returns
0 commit comments