@@ -274,7 +274,7 @@ def __init__(
274274 name = 'input_layer'
275275 ):
276276 Layer .__init__ (self , inputs = inputs , name = name )
277- print (" tensorlayer:Instantiate InputLayer %s: %s" % (self .name , inputs ._shape ))
277+ print (" tensorlayer:Instantiate InputLayer %s: %s" % (self .name , inputs .get_shape () ))
278278 self .outputs = inputs
279279 self .all_layers = []
280280 self .all_params = []
@@ -589,7 +589,7 @@ def __init__(
589589 if self .inputs .get_shape ().ndims != 2 :
590590 raise Exception ("The input dimension must be rank 2, please reshape or flatten it" )
591591
592- n_in = int (self .inputs ._shape [- 1 ])
592+ n_in = int (self .inputs .get_shape () [- 1 ])
593593 self .n_units = n_units
594594 print (" tensorlayer:Instantiate DenseLayer %s: %d, %s" % (self .name , self .n_units , act .__name__ ))
595595 with tf .variable_scope (name ) as vs :
@@ -937,7 +937,7 @@ def __init__(
937937 self .inputs = layer .outputs
938938 if self .inputs .get_shape ().ndims != 2 :
939939 raise Exception ("The input dimension must be rank 2" )
940- n_in = int (self .inputs ._shape [- 1 ])
940+ n_in = int (self .inputs .get_shape () [- 1 ])
941941 self .n_units = n_units
942942 print (" tensorlayer:Instantiate DropconnectDenseLayer %s: %d, %s" % (self .name , self .n_units , act .__name__ ))
943943
@@ -1379,15 +1379,15 @@ def __init__(
13791379 ):
13801380 Layer .__init__ (self , name = name )
13811381 self .inputs = layer .outputs
1382- if len (self .inputs ._shape ) == 3 :
1382+ if len (self .inputs .get_shape () ) == 3 :
13831383 if is_scale :
1384- size_h = size [0 ] * int (self .inputs ._shape [0 ])
1385- size_w = size [1 ] * int (self .inputs ._shape [1 ])
1384+ size_h = size [0 ] * int (self .inputs .get_shape () [0 ])
1385+ size_w = size [1 ] * int (self .inputs .get_shape () [1 ])
13861386 size = [size_h , size_w ]
1387- elif len (self .inputs ._shape ) == 4 :
1387+ elif len (self .inputs .get_shape () ) == 4 :
13881388 if is_scale :
1389- size_h = size [0 ] * int (self .inputs ._shape [1 ])
1390- size_w = size [1 ] * int (self .inputs ._shape [2 ])
1389+ size_h = size [0 ] * int (self .inputs .get_shape () [1 ])
1390+ size_w = size [1 ] * int (self .inputs .get_shape () [2 ])
13911391 size = [size_h , size_w ]
13921392 else :
13931393 raise Exception ("Donot support shape %s" % self .inputs .get_shape ())
@@ -1443,7 +1443,7 @@ def __init__(
14431443 if act is None :
14441444 act = tf .identity
14451445 with tf .variable_scope (name ) as vs :
1446- shape = [filter_size [0 ], filter_size [1 ], int (self .inputs ._shape [- 1 ]), n_filter ]
1446+ shape = [filter_size [0 ], filter_size [1 ], int (self .inputs .get_shape () [- 1 ]), n_filter ]
14471447 filters = tf .get_variable (name = 'filter' , shape = shape , initializer = W_init , ** W_init_args )
14481448 if b_init :
14491449 b = tf .get_variable (name = 'b' , shape = (n_filter ), initializer = b_init , ** b_init_args )
@@ -1524,7 +1524,7 @@ def Conv2d(net, n_filter=32, filter_size=(3, 3), strides=(1, 1), act = None,
15241524 act = tf .identity
15251525 net = Conv2dLayer (net ,
15261526 act = act ,
1527- shape = [filter_size [0 ], filter_size [1 ], int (net .outputs ._shape [- 1 ]), n_filter ], # 32 features for each 5x5 patch
1527+ shape = [filter_size [0 ], filter_size [1 ], int (net .outputs .get_shape () [- 1 ]), n_filter ], # 32 features for each 5x5 patch
15281528 strides = [1 , strides [0 ], strides [1 ], 1 ],
15291529 padding = padding ,
15301530 W_init = W_init ,
@@ -1557,7 +1557,7 @@ def DeConv2d(net, n_out_channel = 32, filter_size=(3, 3),
15571557 batch_size = tf .shape (net .outputs )[0 ]
15581558 net = DeConv2dLayer (layer = net ,
15591559 act = act ,
1560- shape = [filter_size [0 ], filter_size [1 ], n_out_channel , int (net .outputs ._shape [- 1 ])],
1560+ shape = [filter_size [0 ], filter_size [1 ], n_out_channel , int (net .outputs .get_shape () [- 1 ])],
15611561 output_shape = [batch_size , int (out_size [0 ]), int (out_size [1 ]), n_out_channel ],
15621562 strides = [1 , strides [0 ], strides [1 ], 1 ],
15631563 padding = padding ,
@@ -2949,7 +2949,7 @@ def __init__(
29492949 Layer .__init__ (self , name = name )
29502950 self .inputs = layer .outputs
29512951 self .outputs = flatten_reshape (self .inputs , name = name )
2952- self .n_units = int (self .outputs ._shape [- 1 ])
2952+ self .n_units = int (self .outputs .get_shape () [- 1 ])
29532953 print (" tensorlayer:Instantiate FlattenLayer %s: %d" % (self .name , self .n_units ))
29542954 self .all_layers = list (layer .all_layers )
29552955 self .all_params = list (layer .all_params )
@@ -2994,7 +2994,7 @@ def __init__(
29942994 Layer .__init__ (self , name = name )
29952995 self .inputs = layer .outputs
29962996 self .outputs = tf .reshape (self .inputs , shape = shape , name = name )
2997- print (" tensorlayer:Instantiate ReshapeLayer %s: %s" % (self .name , self .outputs ._shape ))
2997+ print (" tensorlayer:Instantiate ReshapeLayer %s: %s" % (self .name , self .outputs .get_shape () ))
29982998 self .all_layers = list (layer .all_layers )
29992999 self .all_params = list (layer .all_params )
30003000 self .all_drop = dict (layer .all_drop )
@@ -3100,7 +3100,7 @@ def __init__(
31003100 for l in layer :
31013101 self .inputs .append (l .outputs )
31023102 self .outputs = tf .concat (concat_dim , self .inputs , name = name ) # 1.2
3103- self .n_units = int (self .outputs ._shape [- 1 ])
3103+ self .n_units = int (self .outputs .get_shape () [- 1 ])
31043104 print (" tensorlayer:Instantiate ConcatLayer %s, %d" % (self .name , self .n_units ))
31053105
31063106 self .all_layers = list (layer [0 ].all_layers )
@@ -3150,12 +3150,12 @@ def __init__(
31503150 ):
31513151 Layer .__init__ (self , name = name )
31523152
3153- print (" tensorlayer:Instantiate ElementwiseLayer %s: %s, %s" % (self .name , layer [0 ].outputs ._shape , combine_fn .__name__ ))
3153+ print (" tensorlayer:Instantiate ElementwiseLayer %s: %s, %s" % (self .name , layer [0 ].outputs .get_shape () , combine_fn .__name__ ))
31543154
31553155 self .outputs = layer [0 ].outputs
31563156 # print(self.outputs._shape, type(self.outputs._shape))
31573157 for l in layer [1 :]:
3158- assert str (self .outputs ._shape ) == str (l .outputs ._shape ) , "Hint: the input shapes should be the same. %s != %s" % (self .outputs ._shape , str (l .outputs ._shape ))
3158+ assert str (self .outputs .get_shape ()) == str (l .outputs .get_shape ()) , "Hint: the input shapes should be the same. %s != %s" % (self .outputs .get_shape () , str (l .outputs .get_shape () ))
31593159 self .outputs = combine_fn (self .outputs , l .outputs , name = name )
31603160
31613161 self .all_layers = list (layer [0 ].all_layers )
@@ -3269,7 +3269,7 @@ def __init__(
32693269 if channel_shared :
32703270 w_shape = (1 ,)
32713271 else :
3272- w_shape = int (self .inputs ._shape [- 1 ])
3272+ w_shape = int (self .inputs .get_shape () [- 1 ])
32733273
32743274 # with tf.name_scope(name) as scope:
32753275 with tf .variable_scope (name ) as vs :
0 commit comments