@@ -123,7 +123,7 @@ def print_all_variables(train_only=False):
123123
124124 Parameters
125125 ----------
126- train_only : boolen
126+ train_only : boolean
127127 If True, only print the trainable variables, otherwise, print all variables.
128128 """
129129 tvar = tf .trainable_variables () if train_only else tf .all_variables ()
@@ -1321,7 +1321,7 @@ class BatchNormLayer(Layer):
13211321 A decay factor for ExponentialMovingAverage.
13221322 epsilon : float
13231323 A small float number to avoid dividing by 0.
1324- is_train : boolen
1324+ is_train : boolean
13251325 Whether train or inference.
13261326 name : a string or None
13271327 An optional name to attach to this layer.
@@ -1450,7 +1450,7 @@ def mean_var_with_update():
14501450# A decay factor for ExponentialMovingAverage.
14511451# epsilon : float
14521452# A small float number to avoid dividing by 0.
1453- # is_train : boolen
1453+ # is_train : boolean
14541454# Whether train or inference.
14551455# name : a string or None
14561456# An optional name to attach to this layer.
@@ -1607,11 +1607,11 @@ class RNNLayer(Layer):
16071607 The sequence length.
16081608 initial_state : None or RNN State
16091609 If None, initial_state is zero_state.
1610- return_last : boolen
1610+ return_last : boolean
16111611 - If True, return the last output, "Sequence input and single output"
16121612 - If False, return all outputs, "Synced sequence input and output"
16131613 - In other word, if you want to apply one or more RNN(s) on this layer, set to False.
1614- return_seq_2d : boolen
1614+ return_seq_2d : boolean
16151615 - When return_last = False
16161616 - If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.
16171617 - If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple RNN after it.
@@ -1764,7 +1764,7 @@ def __init__(
17641764 raise Exception ("RNN : Input dimension should be rank 3 : [batch_size, n_steps, n_features]" )
17651765
17661766
1767- # is_reshape : boolen (deprecate)
1767+ # is_reshape : boolean (deprecate)
17681768 # Reshape the inputs to 3 dimension tensor.\n
17691769 # If input is[batch_size, n_steps, n_features], we do not need to reshape it.\n
17701770 # If input is [batch_size * n_steps, n_features], we need to reshape it.
@@ -1863,11 +1863,11 @@ class BiRNNLayer(Layer):
18631863 The input and output keep probability.
18641864 n_layer : a int, default is 1.
18651865 The number of RNN layers.
1866- return_last : boolen
1866+ return_last : boolean
18671867 - If True, return the last output, "Sequence input and single output"
18681868 - If False, return all outputs, "Synced sequence input and output"
18691869 - In other word, if you want to apply one or more RNN(s) on this layer, set to False.
1870- return_seq_2d : boolen
1870+ return_seq_2d : boolean
18711871 - When return_last = False
18721872 - If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.
18731873 - If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple RNN after it.
@@ -2070,11 +2070,11 @@ class DynamicRNNLayer(Layer):
20702070 The input and output keep probability.
20712071 n_layer : a int, default is 1.
20722072 The number of RNN layers.
2073- return_last : boolen
2073+ return_last : boolean
20742074 - If True, return the last output, "Sequence input and single output"
20752075 - If False, return all outputs, "Synced sequence input and output"
20762076 - In other word, if you want to apply one or more RNN(s) on this layer, set to False.
2077- return_seq_2d : boolen
2077+ return_seq_2d : boolean
20782078 - When return_last = False
20792079 - If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer or computing cost after it.
20802080 - If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), n_hidden], for stacking multiple RNN after it.
@@ -2278,11 +2278,11 @@ class BiDynamicRNNLayer(Layer):
22782278 The number of hidden units in the layer.
22792279 n_steps : a int
22802280 The sequence length.
2281- return_last : boolen
2281+ return_last : boolean
22822282 If True, return the last output, "Sequence input and single output"\n
22832283 If False, return all outputs, "Synced sequence input and output"\n
22842284 In other word, if you want to apply one or more RNN(s) on this layer, set to False.
2285- return_seq_2d : boolen
2285+ return_seq_2d : boolean
22862286 When return_last = False\n
22872287 if True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.
22882288 if False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple RNN after it.
0 commit comments