Skip to content

Commit 37b0f0b

Browse files
committed
fix typo
1 parent 97d8593 commit 37b0f0b

File tree

4 files changed

+19
-19
lines changed

4 files changed

+19
-19
lines changed

tensorlayer/layers.py

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -123,7 +123,7 @@ def print_all_variables(train_only=False):
123123
124124
Parameters
125125
----------
126-
train_only : boolen
126+
train_only : boolean
127127
If True, only print the trainable variables, otherwise, print all variables.
128128
"""
129129
tvar = tf.trainable_variables() if train_only else tf.all_variables()
@@ -1321,7 +1321,7 @@ class BatchNormLayer(Layer):
13211321
A decay factor for ExponentialMovingAverage.
13221322
epsilon : float
13231323
A small float number to avoid dividing by 0.
1324-
is_train : boolen
1324+
is_train : boolean
13251325
Whether train or inference.
13261326
name : a string or None
13271327
An optional name to attach to this layer.
@@ -1450,7 +1450,7 @@ def mean_var_with_update():
14501450
# A decay factor for ExponentialMovingAverage.
14511451
# epsilon : float
14521452
# A small float number to avoid dividing by 0.
1453-
# is_train : boolen
1453+
# is_train : boolean
14541454
# Whether train or inference.
14551455
# name : a string or None
14561456
# An optional name to attach to this layer.
@@ -1607,11 +1607,11 @@ class RNNLayer(Layer):
16071607
The sequence length.
16081608
initial_state : None or RNN State
16091609
If None, initial_state is zero_state.
1610-
return_last : boolen
1610+
return_last : boolean
16111611
- If True, return the last output, "Sequence input and single output"
16121612
- If False, return all outputs, "Synced sequence input and output"
16131613
- In other word, if you want to apply one or more RNN(s) on this layer, set to False.
1614-
return_seq_2d : boolen
1614+
return_seq_2d : boolean
16151615
- When return_last = False
16161616
- If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.
16171617
- If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple RNN after it.
@@ -1764,7 +1764,7 @@ def __init__(
17641764
raise Exception("RNN : Input dimension should be rank 3 : [batch_size, n_steps, n_features]")
17651765

17661766

1767-
# is_reshape : boolen (deprecate)
1767+
# is_reshape : boolean (deprecate)
17681768
# Reshape the inputs to 3 dimension tensor.\n
17691769
# If input is[batch_size, n_steps, n_features], we do not need to reshape it.\n
17701770
# If input is [batch_size * n_steps, n_features], we need to reshape it.
@@ -1863,11 +1863,11 @@ class BiRNNLayer(Layer):
18631863
The input and output keep probability.
18641864
n_layer : a int, default is 1.
18651865
The number of RNN layers.
1866-
return_last : boolen
1866+
return_last : boolean
18671867
- If True, return the last output, "Sequence input and single output"
18681868
- If False, return all outputs, "Synced sequence input and output"
18691869
- In other word, if you want to apply one or more RNN(s) on this layer, set to False.
1870-
return_seq_2d : boolen
1870+
return_seq_2d : boolean
18711871
- When return_last = False
18721872
- If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.
18731873
- If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple RNN after it.
@@ -2070,11 +2070,11 @@ class DynamicRNNLayer(Layer):
20702070
The input and output keep probability.
20712071
n_layer : a int, default is 1.
20722072
The number of RNN layers.
2073-
return_last : boolen
2073+
return_last : boolean
20742074
- If True, return the last output, "Sequence input and single output"
20752075
- If False, return all outputs, "Synced sequence input and output"
20762076
- In other word, if you want to apply one or more RNN(s) on this layer, set to False.
2077-
return_seq_2d : boolen
2077+
return_seq_2d : boolean
20782078
- When return_last = False
20792079
- If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer or computing cost after it.
20802080
- If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), n_hidden], for stacking multiple RNN after it.
@@ -2278,11 +2278,11 @@ class BiDynamicRNNLayer(Layer):
22782278
The number of hidden units in the layer.
22792279
n_steps : a int
22802280
The sequence length.
2281-
return_last : boolen
2281+
return_last : boolean
22822282
If True, return the last output, "Sequence input and single output"\n
22832283
If False, return all outputs, "Synced sequence input and output"\n
22842284
In other word, if you want to apply one or more RNN(s) on this layer, set to False.
2285-
return_seq_2d : boolen
2285+
return_seq_2d : boolean
22862286
When return_last = False\n
22872287
if True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.
22882288
if False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple RNN after it.

tensorlayer/nlp.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -533,7 +533,7 @@ def build_words_dataset(words=[], vocabulary_size=50000, printable=True, unk_key
533533
vocabulary_size : an int
534534
The maximum vocabulary size, limiting the vocabulary size.
535535
Then the script replaces rare words with 'UNK' token.
536-
printable : boolen
536+
printable : boolean
537537
Whether to print the read vocabulary size of the given words.
538538
unk_key : a string
539539
Unknown words = unk_key

tensorlayer/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ def fit(sess, network, train_op, cost, X_train, y_train, x, y_, acc=None, batch_
3838
the input of validation data
3939
y_val : numpy array or None
4040
the target of validation data
41-
eval_train : boolen
41+
eval_train : boolean
4242
if X_val and y_val are not None, it refects whether to evaluate the training data
4343
4444
Examples

tensorlayer/visualize.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ def W(W=None, second=10, saveable=True, shape=[28,28], name='mnist', fig_idx=239
1818
The weight matrix
1919
second : int
2020
The display second(s) for the image(s), if saveable is False.
21-
saveable : boolen
21+
saveable : boolean
2222
Save or plot the figure.
2323
shape : a list with 2 int
2424
The shape of feature image, MNIST is [28, 80].
@@ -79,7 +79,7 @@ def frame(I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=1283
7979
The image
8080
second : int
8181
The display second(s) for the image(s), if saveable is False.
82-
saveable : boolen
82+
saveable : boolean
8383
Save or plot the figure.
8484
name : a string
8585
A name to save the image, if saveable is True.
@@ -121,7 +121,7 @@ def CNN2d(CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362):
121121
The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
122122
second : int
123123
The display second(s) for the image(s), if saveable is False.
124-
saveable : boolen
124+
saveable : boolean
125125
Save or plot the figure.
126126
name : a string
127127
A name to save the image, if saveable is True.
@@ -183,7 +183,7 @@ def images2d(images=None, second=10, saveable=True, name='images', dtype=None,
183183
The images.
184184
second : int
185185
The display second(s) for the image(s), if saveable is False.
186-
saveable : boolen
186+
saveable : boolean
187187
Save or plot the figure.
188188
name : a string
189189
A name to save the image, if saveable is True.
@@ -253,7 +253,7 @@ def tsne_embedding(embeddings, reverse_dictionary, plot_only=500,
253253
The number of examples to plot, choice the most common words.
254254
second : int
255255
The display second(s) for the image(s), if saveable is False.
256-
saveable : boolen
256+
saveable : boolean
257257
Save or plot the figure.
258258
name : a string
259259
A name to save the image, if saveable is True.

0 commit comments

Comments
 (0)