@@ -1924,8 +1924,9 @@ def mean_var_with_update():
19241924 self .outputs = act ( tf .nn .batch_normalization (self .inputs , mean , variance , beta , gamma , epsilon ) )
19251925
19261926 # variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name) # 8 params in TF12 if zero_debias=True
1927- variables = tf .get_collection (tf .GraphKeys .TRAINABLE_VARIABLES , scope = vs .name ) # 2 params beta, gamma
1927+ # variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=vs.name) # 2 params beta, gamma
19281928 # variables = [beta, gamma, moving_mean, moving_variance]
1929+ variables = [beta , gamma ]
19291930
19301931 # print(len(variables))
19311932 # for idx, v in enumerate(variables):
@@ -2091,8 +2092,9 @@ def mean_var_with_update():
20912092 )
20922093 self .outputs = act ( normed )
20932094 # variables = tf.get_collection(TF_GRAPHKEYS_VARIABLES, scope=vs.name) # 8 params in TF12 if zero_debias=True
2094- variables = tf .get_collection (tf .GraphKeys .TRAINABLE_VARIABLES , scope = vs .name ) # 2 params beta, gamma
2095+ # variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=vs.name) # 2 params beta, gamma
20952096 # variables = [beta, gamma, moving_mean, moving_variance]
2097+ variables = [beta , gamma ]
20962098
20972099 # print(len(variables))
20982100 # for idx, v in enumerate(variables):
0 commit comments