@@ -652,31 +652,32 @@ def __init__(
652652
653653
654654class AverageEmbeddingInputlayer (Layer ):
655+ """The :class:`AverageEmbeddingInputlayer` class is for FastText Embedding for sentence classification, see `[1] <http://arxiv.org/abs/1607.01759>`_.
656+
657+ Parameters
658+ ------------
659+ inputs : input placeholder or tensor; zeros are paddings
660+ vocabulary_size : an integer, the size of vocabulary
661+ embedding_size : an integer, the dimension of embedding vectors
662+ name : a string, the name of the layer
663+ embeddings_initializer : the initializer of the embedding matrix
664+ embeddings_kwargs : kwargs to get embedding matrix variable
665+
666+ References
667+ ------------
668+ - [1] Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016).
669+ `Bag of Tricks for Efficient Text Classification. <http://arxiv.org/abs/1607.01759>`_
670+ - [2] Recht, B., Re, C., Wright, S., & Niu, F. (2011).
671+ `Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. <https://arxiv.org/abs/1106.5730>`_
672+ In Advances in Neural Information Processing Systems 24 (pp. 693–701).
673+ - [3] `TensorFlow Candidate Sampling <https://www.tensorflow.org/api_guides/python/nn#Candidate_Sampling>`_
674+ """
655675 def __init__ (
656676 self , inputs , vocabulary_size , embedding_size ,
657677 name = 'fasttext_layer' ,
658678 embeddings_initializer = tf .random_uniform_initializer (- 0.1 , 0.1 ),
659- embeddings_kwargs = {}):#None):
660- """The :class:`AverageEmbeddingInputlayer` class is for FastText Embedding for sentence classification, see `[1] <http://arxiv.org/abs/1607.01759>`_.
661-
662- Parameters
663- ------------
664- inputs : input placeholder or tensor; zeros are paddings
665- vocabulary_size : an integer, the size of vocabulary
666- embedding_size : an integer, the dimension of embedding vectors
667- name : a string, the name of the layer
668- embeddings_initializer : the initializer of the embedding matrix
669- embeddings_kwargs : kwargs to get embedding matrix variable
670-
671- References
672- ------------
673- - [1] Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016).
674- `Bag of Tricks for Efficient Text Classification. <http://arxiv.org/abs/1607.01759>`_
675- - [2] Recht, B., Re, C., Wright, S., & Niu, F. (2011).
676- `Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. <https://arxiv.org/abs/1106.5730>`_
677- In Advances in Neural Information Processing Systems 24 (pp. 693–701).
678- - [3] `TensorFlow Candidate Sampling <https://www.tensorflow.org/api_guides/python/nn#Candidate_Sampling>`_
679- """
679+ embeddings_kwargs = {}
680+ ):#None):
680681 super ().__init__ (name = name )
681682
682683 if inputs .get_shape ().ndims != 2 :
0 commit comments