Skip to content

Commit 5fa98cf

Browse files
authored
Merge pull request #348 from tensorlayer/cost-codacy
fully fixed cost.py
2 parents 54497ae + 7c0f318 commit 5fa98cf

File tree

1 file changed

+10
-9
lines changed

1 file changed

+10
-9
lines changed

tensorlayer/cost.py

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,8 @@ def cross_entropy(output, target, name=None):
3131
# try: # old
3232
# return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output, targets=target))
3333
# except: # TF 1.0
34-
assert name is not None, "Please give a unique name to tl.cost.cross_entropy for TF1.0+"
34+
if name is None:
35+
raise Exception("Please give a unique name to tl.cost.cross_entropy for TF1.0+")
3536
return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output, name=name))
3637

3738

@@ -186,7 +187,7 @@ def absolute_difference_error(output, target, is_mean=False):
186187
return loss
187188

188189

189-
def dice_coe(output, target, loss_type='jaccard', axis=[1, 2, 3], smooth=1e-5):
190+
def dice_coe(output, target, loss_type='jaccard', axis=(1, 2, 3), smooth=1e-5):
190191
"""Soft dice (Sørensen or Jaccard) coefficient for comparing the similarity
191192
of two batch of data, usually be used for binary image segmentation
192193
i.e. labels are binary. The coefficient between 0 to 1, 1 means totally match.
@@ -199,7 +200,7 @@ def dice_coe(output, target, loss_type='jaccard', axis=[1, 2, 3], smooth=1e-5):
199200
The target distribution, format the same with `output`.
200201
loss_type : str
201202
``jaccard`` or ``sorensen``, default is ``jaccard``.
202-
axis : list of int
203+
axis : tuple of int
203204
All dimensions are reduced, default ``[1,2,3]``.
204205
smooth : float
205206
This small value will be added to the numerator and denominator.
@@ -236,7 +237,7 @@ def dice_coe(output, target, loss_type='jaccard', axis=[1, 2, 3], smooth=1e-5):
236237
return dice
237238

238239

239-
def dice_hard_coe(output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-5):
240+
def dice_hard_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5):
240241
"""Non-differentiable Sørensen–Dice coefficient for comparing the similarity
241242
of two batch of data, usually be used for binary image segmentation i.e. labels are binary.
242243
The coefficient between 0 to 1, 1 if totally match.
@@ -249,8 +250,8 @@ def dice_hard_coe(output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-5):
249250
The target distribution, format the same with `output`.
250251
threshold : float
251252
The threshold value to be true.
252-
axis : list of integer
253-
All dimensions are reduced, default ``[1,2,3]``.
253+
axis : tuple of integer
254+
All dimensions are reduced, default ``(1,2,3)``.
254255
smooth : float
255256
This small value will be added to the numerator and denominator, see ``dice_coe``.
256257
@@ -275,7 +276,7 @@ def dice_hard_coe(output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-5):
275276
return hard_dice
276277

277278

278-
def iou_coe(output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-5):
279+
def iou_coe(output, target, threshold=0.5, axis=(1, 2, 3), smooth=1e-5):
279280
"""Non-differentiable Intersection over Union (IoU) for comparing the
280281
similarity of two batch of data, usually be used for evaluating binary image segmentation.
281282
The coefficient between 0 to 1, and 1 means totally match.
@@ -288,8 +289,8 @@ def iou_coe(output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-5):
288289
The target distribution, format the same with `output`.
289290
threshold : float
290291
The threshold value to be true.
291-
axis : list of integer
292-
All dimensions are reduced, default ``[1,2,3]``.
292+
axis : tuple of integer
293+
All dimensions are reduced, default ``(1,2,3)``.
293294
smooth : float
294295
This small value will be added to the numerator and denominator, see ``dice_coe``.
295296

0 commit comments

Comments
 (0)