@@ -120,9 +120,40 @@ Google Drive
120120^^^^^^^^^^^^^^^^
121121.. autofunction :: download_file_from_google_drive
122122
123+
124+
125+
126+
123127Load and save network
124128----------------------
125129
130+ TensorFlow provides ``.ckpt `` file format to save and restore the models, while
131+ we suggest to use standard python file format ``.npz `` to save models for the
132+ sake of cross-platform.
133+
134+ .. code-block :: python
135+
136+ # # save model as .ckpt
137+ saver = tf.train.Saver()
138+ save_path = saver.save(sess, " model.ckpt" )
139+ # restore model from .ckpt
140+ saver = tf.train.Saver()
141+ saver.restore(sess, " model.ckpt" )
142+
143+ # # save model as .npz
144+ tl.files.save_npz(network.all_params , name = ' model.npz' )
145+ # restore model from .npz (method 1)
146+ load_params = tl.files.load_npz(name = ' model.npz' )
147+ tl.files.assign_params(sess, load_params, network)
148+ # restore model from .npz (method 2)
149+ tl.files.load_and_assign_npz(sess = sess, name = ' model.npz' , network = network)
150+
151+ # # you can assign the pre-trained parameters as follow
152+ # 1st parameter
153+ tl.files.assign_params(sess, [load_params[0 ]], network)
154+ # the first three parameters
155+ tl.files.assign_params(sess, load_params[:3 ], network)
156+
126157 Save network into list (npz)
127158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
128159.. autofunction :: save_npz
@@ -159,37 +190,10 @@ Load network from ckpt
159190
160191
161192
193+
162194Load and save variables
163195------------------------
164196
165- TensorFlow provides ``.ckpt `` file format to save and restore the models, while
166- we suggest to use standard python file format ``.npz `` to save models for the
167- sake of cross-platform.
168-
169- .. code-block :: python
170-
171- # # save model as .ckpt
172- saver = tf.train.Saver()
173- save_path = saver.save(sess, " model.ckpt" )
174- # restore model from .ckpt
175- saver = tf.train.Saver()
176- saver.restore(sess, " model.ckpt" )
177-
178- # # save model as .npz
179- tl.files.save_npz(network.all_params , name = ' model.npz' )
180- # restore model from .npz (method 1)
181- load_params = tl.files.load_npz(name = ' model.npz' )
182- tl.files.assign_params(sess, load_params, network)
183- # restore model from .npz (method 2)
184- tl.files.load_and_assign_npz(sess = sess, name = ' model.npz' , network = network)
185-
186- # # you can assign the pre-trained parameters as follow
187- # 1st parameter
188- tl.files.assign_params(sess, [load_params[0 ]], network)
189- # the first three parameters
190- tl.files.assign_params(sess, load_params[:3 ], network)
191-
192-
193197Save variables as .npy
194198^^^^^^^^^^^^^^^^^^^^^^^^^
195199.. autofunction :: save_any_to_npy
@@ -199,6 +203,8 @@ Load variables from .npy
199203.. autofunction :: load_npy_to_any
200204
201205
206+
207+
202208Folder/File functions
203209------------------------
204210
@@ -238,6 +244,8 @@ Download or extract
238244^^^^^^^^^^^^^^^^^^^^^^^^^
239245.. autofunction :: maybe_download_and_extract
240246
247+
248+
241249Sort
242250-------
243251
0 commit comments