@@ -22,7 +22,7 @@ def cross_entropy(output, target, name="cross_entropy_loss"):
2222
2323 Examples
2424 --------
25- >>> ce = tf .cost.cross_entropy(y_logits, y_target_logits)
25+ >>> ce = tl .cost.cross_entropy(y_logits, y_target_logits)
2626
2727 References
2828 -----------
@@ -41,7 +41,7 @@ def cross_entropy(output, target, name="cross_entropy_loss"):
4141def binary_cross_entropy (output , target , epsilon = 1e-8 , name = 'bce_loss' ):
4242 """Computes binary cross entropy given `output`.
4343
44- For brevity, let `x = `, `z = targets `. The logistic loss is
44+ For brevity, let `x = output `, `z = target `. The binary cross entropy loss is
4545
4646 loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
4747
@@ -78,8 +78,9 @@ def mean_squared_error(output, target):
7878 A distribution with shape: [batch_size, n_feature].
7979 """
8080 with tf .name_scope ("mean_squared_error_loss" ):
81- mse = tf .reduce_sum (tf .squared_difference (output , target ), reduction_indices = 1 )
82- return tf .reduce_mean (mse )
81+ mse = tf .reduce_mean (tf .reduce_sum (tf .squared_difference (output , target ),
82+ reduction_indices = 1 ))
83+ return mse
8384
8485
8586
@@ -223,7 +224,7 @@ def li_regularizer(scale):
223224
224225 Returns
225226 --------
226- A function with signature `li(weights, name=None)` that apply L1 regularization.
227+ A function with signature `li(weights, name=None)` that apply Li regularization.
227228
228229 Raises
229230 ------
0 commit comments