@@ -180,7 +180,7 @@ def main(_):
180180 # same with MNIST example, it is the number of concurrent processes for
181181 # computational reasons.
182182
183- # Training and Validing
183+ # Training and Validation
184184 input_data = tf .placeholder (tf .int32 , [batch_size , num_steps ])
185185 targets = tf .placeholder (tf .int32 , [batch_size , num_steps ])
186186 # Testing (Evaluation)
@@ -251,7 +251,7 @@ def inference(x, is_training, num_steps, reuse=None):
251251 # sess.run(tf.initialize_all_variables())
252252 tl .layers .initialize_global_variables (sess )
253253
254- def loss_fn (outputs , targets ): # , batch_size, num_steps ):
254+ def loss_fn (outputs , targets , batch_size ):
255255 # See tl.cost.cross_entropy_seq()
256256 # Returns the cost function of Cross-entropy of two sequences, implement
257257 # softmax internally.
@@ -270,11 +270,11 @@ def loss_fn(outputs, targets):#, batch_size, num_steps):
270270 return cost
271271
272272 # Cost for Training
273- cost = loss_fn (network .outputs , targets ) # , batch_size, num_steps )
273+ cost = loss_fn (network .outputs , targets , batch_size )
274274 # Cost for Validating
275- cost_val = loss_fn (network_val .outputs , targets ) # , batch_size, num_steps )
275+ cost_val = loss_fn (network_val .outputs , targets , batch_size )
276276 # Cost for Testing (Evaluation)
277- cost_test = loss_fn (network_test .outputs , targets_test ) #, 1 , 1)
277+ cost_test = loss_fn (network_test .outputs , targets_test , 1 )
278278
279279 # Truncated Backpropagation for training
280280 with tf .variable_scope ('learning_rate' ):
@@ -339,7 +339,7 @@ def loss_fn(outputs, targets):#, batch_size, num_steps):
339339 print ("Epoch: %d/%d Train Perplexity: %.3f" % (i + 1 , max_max_epoch ,
340340 train_perplexity ))
341341
342- # Validing
342+ # Validation
343343 start_time = time .time ()
344344 costs = 0.0 ; iters = 0
345345 # reset all states at the begining of every epoch
0 commit comments