@@ -219,7 +219,6 @@ def forward(self, inputs, initial_state=None, **kwargs):
219219class SimpleRNN (RNN ):
220220 """
221221 The :class:`SimpleRNN` class is a fixed length recurrent layer for implementing simple RNN.
222- This class is a derived class from :class:`RNN`.
223222
224223 Parameters
225224 ----------
@@ -230,19 +229,23 @@ class SimpleRNN(RNN):
230229 - If True, return the last output, "Sequence input and single output"
231230 - If False, return all outputs, "Synced sequence input and output"
232231 - In other word, if you want to stack more RNNs on this layer, set to False
232+
233233 In a dynamic model, `return_last_output` can be updated when it is called in customised forward().
234234 By default, `False`.
235235 return_seq_2d : boolean
236236 Only consider this argument when `return_last_output` is `False`
237237 - If True, return 2D Tensor [batch_size * n_steps, n_hidden], for stacking Dense layer after it.
238238 - If False, return 3D Tensor [batch_size, n_steps, n_hidden], for stacking multiple RNN after it.
239+
239240 In a dynamic model, `return_seq_2d` can be updated when it is called in customised forward().
240241 By default, `False`.
241242 return_last_state: boolean
242243 Whether to return the last state of the RNN cell. The state is a list of Tensor.
243- For simple RNN, last_state = [last_output];
244+ For simple RNN, last_state = [last_output]
245+
244246 - If True, the layer will return outputs and the final state of the cell.
245247 - If False, the layer will return outputs only.
248+
246249 In a dynamic model, `return_last_state` can be updated when it is called in customised forward().
247250 By default, `False`.
248251 in_channels: int
@@ -251,13 +254,15 @@ class SimpleRNN(RNN):
251254 If None, it will be automatically detected when the layer is forwarded for the first time.
252255 name : str
253256 A unique layer name.
254- **kwargs:
255- Advanced arguments to configure the simple RNN cell. Please check tf.keras.layers.SimpleRNNCell.
257+ `**kwargs`:
258+ Advanced arguments to configure the simple RNN cell.
259+ Please check tf.keras.layers.SimpleRNNCell.
256260
257261 Examples
258262 --------
259263
260264 A simple regression model below.
265+
261266 >>> inputs = tl.layers.Input([batch_size, num_steps, embedding_size])
262267 >>> rnn_out, lstm_state = tl.layers.SimpleRNN(
263268 >>> units=hidden_size, dropout=0.1, # both units and dropout are used to configure the simple rnn cell.
@@ -292,7 +297,6 @@ def __init__(
292297class GRURNN (RNN ):
293298 """
294299 The :class:`GRURNN` class is a fixed length recurrent layer for implementing RNN with GRU cell.
295- This class is a derived class from :class:`RNN`.
296300
297301 Parameters
298302 ----------
@@ -303,19 +307,23 @@ class GRURNN(RNN):
303307 - If True, return the last output, "Sequence input and single output"
304308 - If False, return all outputs, "Synced sequence input and output"
305309 - In other word, if you want to stack more RNNs on this layer, set to False
310+
306311 In a dynamic model, `return_last_output` can be updated when it is called in customised forward().
307312 By default, `False`.
308313 return_seq_2d : boolean
309314 Only consider this argument when `return_last_output` is `False`
310315 - If True, return 2D Tensor [batch_size * n_steps, n_hidden], for stacking Dense layer after it.
311316 - If False, return 3D Tensor [batch_size, n_steps, n_hidden], for stacking multiple RNN after it.
317+
312318 In a dynamic model, `return_seq_2d` can be updated when it is called in customised forward().
313319 By default, `False`.
314320 return_last_state: boolean
315321 Whether to return the last state of the RNN cell. The state is a list of Tensor.
316- For GRU, last_state = [last_output];
322+ For GRU, last_state = [last_output]
323+
317324 - If True, the layer will return outputs and the final state of the cell.
318325 - If False, the layer will return outputs only.
326+
319327 In a dynamic model, `return_last_state` can be updated when it is called in customised forward().
320328 By default, `False`.
321329 in_channels: int
@@ -324,13 +332,15 @@ class GRURNN(RNN):
324332 If None, it will be automatically detected when the layer is forwarded for the first time.
325333 name : str
326334 A unique layer name.
327- **kwargs:
328- Advanced arguments to configure the GRU cell. Please check tf.keras.layers.GRUCell.
335+ `**kwargs`:
336+ Advanced arguments to configure the GRU cell.
337+ Please check tf.keras.layers.GRUCell.
329338
330339 Examples
331340 --------
332341
333342 A simple regression model below.
343+
334344 >>> inputs = tl.layers.Input([batch_size, num_steps, embedding_size])
335345 >>> rnn_out, lstm_state = tl.layers.GRURNN(
336346 >>> units=hidden_size, dropout=0.1, # both units and dropout are used to configure the GRU cell.
@@ -365,7 +375,6 @@ def __init__(
365375class LSTMRNN (RNN ):
366376 """
367377 The :class:`LSTMRNN` class is a fixed length recurrent layer for implementing RNN with LSTM cell.
368- This class is a derived class from :class:`RNN`.
369378
370379 Parameters
371380 ----------
@@ -376,19 +385,23 @@ class LSTMRNN(RNN):
376385 - If True, return the last output, "Sequence input and single output"
377386 - If False, return all outputs, "Synced sequence input and output"
378387 - In other word, if you want to stack more RNNs on this layer, set to False
388+
379389 In a dynamic model, `return_last_output` can be updated when it is called in customised forward().
380390 By default, `False`.
381391 return_seq_2d : boolean
382392 Only consider this argument when `return_last_output` is `False`
383393 - If True, return 2D Tensor [batch_size * n_steps, n_hidden], for stacking Dense layer after it.
384394 - If False, return 3D Tensor [batch_size, n_steps, n_hidden], for stacking multiple RNN after it.
395+
385396 In a dynamic model, `return_seq_2d` can be updated when it is called in customised forward().
386397 By default, `False`.
387398 return_last_state: boolean
388399 Whether to return the last state of the RNN cell. The state is a list of Tensor.
389400 For LSTM, last_state = [last_output, last_cell_state]
401+
390402 - If True, the layer will return outputs and the final state of the cell.
391403 - If False, the layer will return outputs only.
404+
392405 In a dynamic model, `return_last_state` can be updated when it is called in customised forward().
393406 By default, `False`.
394407 in_channels: int
@@ -397,13 +410,15 @@ class LSTMRNN(RNN):
397410 If None, it will be automatically detected when the layer is forwarded for the first time.
398411 name : str
399412 A unique layer name.
400- **kwargs:
401- Advanced arguments to configure the LSTM cell. Please check tf.keras.layers.LSTMCell.
413+ `**kwargs`:
414+ Advanced arguments to configure the LSTM cell.
415+ Please check tf.keras.layers.LSTMCell.
402416
403417 Examples
404418 --------
405419
406420 A simple regression model below.
421+
407422 >>> inputs = tl.layers.Input([batch_size, num_steps, embedding_size])
408423 >>> rnn_out, lstm_state = tl.layers.LSTMRNN(
409424 >>> units=hidden_size, dropout=0.1, # both units and dropout are used to configure the LSTM cell.
0 commit comments