Skip to content

Commit b17b2e4

Browse files
committed
fixed docs models examples
1 parent 015bb0d commit b17b2e4

File tree

3 files changed

+9
-0
lines changed

3 files changed

+9
-0
lines changed

tensorlayer/models/mobilenetv1.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,7 @@ class MobileNetV1(Layer):
3232
Examples
3333
---------
3434
Classify ImageNet classes, see `tutorial_models_mobilenetv1.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_mobilenetv1.py>__`
35+
3536
>>> x = tf.placeholder(tf.float32, [None, 224, 224, 3])
3637
>>> # get the whole model
3738
>>> net = tl.models.MobileNetV1(x)
@@ -42,6 +43,7 @@ class MobileNetV1(Layer):
4243
>>> probs = tf.nn.softmax(net.outputs)
4344
4445
Extract features and Train a classifier with 100 classes
46+
4547
>>> x = tf.placeholder(tf.float32, [None, 224, 224, 3])
4648
>>> # get model without the last layer
4749
>>> cnn = tl.models.MobileNetV1(x, end_with='reshape')
@@ -57,6 +59,7 @@ class MobileNetV1(Layer):
5759
>>> train_params = tl.layers.get_variables_with_name('output')
5860
5961
Reuse model
62+
6063
>>> x1 = tf.placeholder(tf.float32, [None, 224, 224, 3])
6164
>>> x2 = tf.placeholder(tf.float32, [None, 224, 224, 3])
6265
>>> # get VGG without the last layer

tensorlayer/models/squeezenetv1.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,7 @@ class SqueezeNetV1(Layer):
3232
Examples
3333
---------
3434
Classify ImageNet classes, see `tutorial_models_squeezenetv1.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py>__`
35+
3536
>>> x = tf.placeholder(tf.float32, [None, 224, 224, 3])
3637
>>> # get the whole model
3738
>>> net = tl.models.SqueezeNetV1(x)
@@ -42,6 +43,7 @@ class SqueezeNetV1(Layer):
4243
>>> probs = tf.nn.softmax(net.outputs)
4344
4445
Extract features and Train a classifier with 100 classes
46+
4547
>>> x = tf.placeholder(tf.float32, [None, 224, 224, 3])
4648
>>> # get model without the last layer
4749
>>> cnn = tl.models.SqueezeNetV1(x, end_with='fire9')
@@ -57,6 +59,7 @@ class SqueezeNetV1(Layer):
5759
>>> train_params = tl.layers.get_variables_with_name('output')
5860
5961
Reuse model
62+
6063
>>> x1 = tf.placeholder(tf.float32, [None, 224, 224, 3])
6164
>>> x2 = tf.placeholder(tf.float32, [None, 224, 224, 3])
6265
>>> # get VGG without the last layer

tensorlayer/models/vgg16.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -245,6 +245,7 @@ class VGG16(VGG16Base):
245245
Examples
246246
---------
247247
Classify ImageNet classes with VGG16, see `tutorial_models_vgg16.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_vgg16.py>__`
248+
248249
>>> x = tf.placeholder(tf.float32, [None, 224, 224, 3])
249250
>>> # get the whole model
250251
>>> vgg = tl.models.VGG16(x)
@@ -255,6 +256,7 @@ class VGG16(VGG16Base):
255256
>>> probs = tf.nn.softmax(vgg.outputs)
256257
257258
Extract features with VGG16 and Train a classifier with 100 classes
259+
258260
>>> x = tf.placeholder(tf.float32, [None, 224, 224, 3])
259261
>>> # get VGG without the last layer
260262
>>> vgg = tl.models.VGG16(x, end_with='fc2_relu')
@@ -269,6 +271,7 @@ class VGG16(VGG16Base):
269271
>>> train_params = tl.layers.get_variables_with_name('out')
270272
271273
Reuse model
274+
272275
>>> x1 = tf.placeholder(tf.float32, [None, 224, 224, 3])
273276
>>> x2 = tf.placeholder(tf.float32, [None, 224, 224, 3])
274277
>>> # get VGG without the last layer

0 commit comments

Comments
 (0)