Skip to content

Commit c6797ac

Browse files
authored
Update layers.rst
1 parent b5865a1 commit c6797ac

File tree

1 file changed

+5
-42
lines changed

1 file changed

+5
-42
lines changed

docs/modules/layers.rst

Lines changed: 5 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -315,24 +315,6 @@ Tile layer
315315
^^^^^^^^^^^^^^^^^^^^
316316
.. autoclass:: Tile
317317

318-
319-
.. -----------------------------------------------------------
320-
.. External Libraries Layers
321-
.. -----------------------------------------------------------
322-
323-
External Libraries Layers
324-
------------------------------
325-
326-
TF-Slim Layer
327-
^^^^^^^^^^^^^^^^^^^
328-
TF-Slim models can be connected into TensorLayer. All Google's Pre-trained model can be used easily ,
329-
see `Slim-model <https://github.com/tensorflow/models/tree/master/research/slim>`__.
330-
331-
.. autoclass:: SlimNets
332-
333-
334-
335-
336318
.. -----------------------------------------------------------
337319
.. Image Resampling Layers
338320
.. -----------------------------------------------------------
@@ -393,9 +375,6 @@ Noise Layer
393375
Normalization Layers
394376
--------------------
395377

396-
For local response normalization as it does not have any weights and arguments,
397-
you can also apply ``tf.nn.lrn`` on ``network.outputs``.
398-
399378
Batch Normalization
400379
^^^^^^^^^^^^^^^^^^^^^^
401380
.. autoclass:: BatchNorm
@@ -420,14 +399,6 @@ Switch Normalization
420399
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
421400
.. autoclass:: SwitchNorm
422401

423-
.. -----------------------------------------------------------
424-
.. Object Detection Layers
425-
.. -----------------------------------------------------------
426-
427-
Object Detection Layer
428-
------------------------
429-
.. autoclass:: ROIPoolingLayer
430-
431402
.. -----------------------------------------------------------
432403
.. Padding Layers
433404
.. -----------------------------------------------------------
@@ -527,7 +498,7 @@ Quantized Nets
527498

528499
This is an experimental API package for building Quantized Neural Networks. We are using matrix multiplication rather than add-minus and bit-count operation at the moment. Therefore, these APIs would not speed up the inferencing, for production, you can train model via TensorLayer and deploy the model into other customized C/C++ implementation (We probably provide users an extra C/C++ binary net framework that can load model from TensorLayer).
529500

530-
Note that, these experimental APIs can be changed in the future
501+
Note that, these experimental APIs can be changed in the future.
531502

532503

533504
Sign
@@ -607,7 +578,7 @@ QuantizedConv2dWithBN
607578
Recurrent Layers
608579
---------------------
609580

610-
Fixed Length Recurrent layer
581+
Common Recurrent layer
611582
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
612583
All recurrent layers can implement any type of RNN cell by feeding different cell function (LSTM, GRU etc).
613584

@@ -635,6 +606,9 @@ Conv LSTM layer
635606
"""""""""""""""""""""""""""""""""
636607
.. autoclass:: ConvLSTM
637608

609+
Simple Seq2Seq
610+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
611+
.. autoclass:: Seq2Seq
638612

639613
Advanced Ops for Dynamic RNN
640614
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -658,17 +632,6 @@ Get Mask
658632
.. autofunction:: target_mask_op
659633

660634

661-
Dynamic RNN Layer
662-
^^^^^^^^^^^^^^^^^^^^^^
663-
664-
665-
Sequence to Sequence
666-
^^^^^^^^^^^^^^^^^^^^^^
667-
668-
Simple Seq2Seq
669-
"""""""""""""""""
670-
.. autoclass:: Seq2Seq
671-
672635

673636
.. -----------------------------------------------------------
674637
.. Shape Layers

0 commit comments

Comments
 (0)