|
| 1 | +"""AMSGrad Implementation based on the paper: "On the Convergence of Adam and Beyond" (ICLR 2018) |
| 2 | +Article Link: https://openreview.net/pdf?id=ryQu7f-RZ |
| 3 | +Original Implementation by: https://github.com/taki0112/AMSGrad-Tensorflow |
| 4 | +""" |
| 5 | + |
| 6 | +from tensorflow.python.eager import context |
| 7 | +from tensorflow.python.framework import ops |
| 8 | +from tensorflow.python.ops import control_flow_ops |
| 9 | +from tensorflow.python.ops import math_ops |
| 10 | +from tensorflow.python.ops import resource_variable_ops |
| 11 | +from tensorflow.python.ops import state_ops |
| 12 | +from tensorflow.python.ops import variable_scope |
| 13 | +from tensorflow.python.training import optimizer |
| 14 | + |
| 15 | + |
| 16 | +class AMSGrad(optimizer.Optimizer): |
| 17 | + """Implementation of the AMSGrad optimization algorithm.\n |
| 18 | + See: `On the Convergence of Adam and Beyond - [Reddi et al., 2018] <https://openreview.net/pdf?id=ryQu7f-RZ>`__. |
| 19 | +
|
| 20 | + Parameters |
| 21 | + ---------- |
| 22 | + learning_rate: float |
| 23 | + A Tensor or a floating point value. The learning rate. |
| 24 | + beta1: float |
| 25 | + A float value or a constant float tensor. |
| 26 | + The exponential decay rate for the 1st moment estimates. |
| 27 | + beta2: float |
| 28 | + A float value or a constant float tensor. |
| 29 | + The exponential decay rate for the 2nd moment estimates. |
| 30 | + epsilon: float |
| 31 | + A small constant for numerical stability. |
| 32 | + This epsilon is "epsilon hat" in the Kingma and Ba paper |
| 33 | + (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. |
| 34 | + use_locking: bool |
| 35 | + If True use locks for update operations. |
| 36 | + name: str |
| 37 | + Optional name for the operations created when applying gradients. |
| 38 | + Defaults to "AMSGrad". |
| 39 | + """ |
| 40 | + |
| 41 | + def __init__(self, learning_rate=0.01, beta1=0.9, beta2=0.99, epsilon=1e-8, use_locking=False, name="AMSGrad"): |
| 42 | + """Construct a new Adam optimizer. |
| 43 | + """ |
| 44 | + super(AMSGrad, self).__init__(use_locking, name) |
| 45 | + self._lr = learning_rate |
| 46 | + self._beta1 = beta1 |
| 47 | + self._beta2 = beta2 |
| 48 | + self._epsilon = epsilon |
| 49 | + |
| 50 | + self._lr_t = None |
| 51 | + self._beta1_t = None |
| 52 | + self._beta2_t = None |
| 53 | + self._epsilon_t = None |
| 54 | + |
| 55 | + self._beta1_power = None |
| 56 | + self._beta2_power = None |
| 57 | + |
| 58 | + def _create_slots(self, var_list): |
| 59 | + first_var = min(var_list, key=lambda x: x.name) |
| 60 | + |
| 61 | + create_new = self._beta1_power is None |
| 62 | + if not create_new and context.in_graph_mode(): |
| 63 | + create_new = (self._beta1_power.graph is not first_var.graph) |
| 64 | + |
| 65 | + if create_new: |
| 66 | + with ops.colocate_with(first_var): |
| 67 | + self._beta1_power = variable_scope.variable(self._beta1, name="beta1_power", trainable=False) |
| 68 | + self._beta2_power = variable_scope.variable(self._beta2, name="beta2_power", trainable=False) |
| 69 | + # Create slots for the first and second moments. |
| 70 | + for v in var_list: |
| 71 | + self._zeros_slot(v, "m", self._name) |
| 72 | + self._zeros_slot(v, "v", self._name) |
| 73 | + self._zeros_slot(v, "vhat", self._name) |
| 74 | + |
| 75 | + def _prepare(self): |
| 76 | + self._lr_t = ops.convert_to_tensor(self._lr) |
| 77 | + self._beta1_t = ops.convert_to_tensor(self._beta1) |
| 78 | + self._beta2_t = ops.convert_to_tensor(self._beta2) |
| 79 | + self._epsilon_t = ops.convert_to_tensor(self._epsilon) |
| 80 | + |
| 81 | + def _apply_dense(self, grad, var): |
| 82 | + beta1_power = math_ops.cast(self._beta1_power, var.dtype.base_dtype) |
| 83 | + beta2_power = math_ops.cast(self._beta2_power, var.dtype.base_dtype) |
| 84 | + lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) |
| 85 | + beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) |
| 86 | + beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) |
| 87 | + epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) |
| 88 | + |
| 89 | + lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) |
| 90 | + |
| 91 | + # m_t = beta1 * m + (1 - beta1) * g_t |
| 92 | + m = self.get_slot(var, "m") |
| 93 | + m_scaled_g_values = grad * (1 - beta1_t) |
| 94 | + m_t = state_ops.assign(m, beta1_t * m + m_scaled_g_values, use_locking=self._use_locking) |
| 95 | + |
| 96 | + # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) |
| 97 | + v = self.get_slot(var, "v") |
| 98 | + v_scaled_g_values = (grad * grad) * (1 - beta2_t) |
| 99 | + v_t = state_ops.assign(v, beta2_t * v + v_scaled_g_values, use_locking=self._use_locking) |
| 100 | + |
| 101 | + # amsgrad |
| 102 | + vhat = self.get_slot(var, "vhat") |
| 103 | + vhat_t = state_ops.assign(vhat, math_ops.maximum(v_t, vhat)) |
| 104 | + v_sqrt = math_ops.sqrt(vhat_t) |
| 105 | + |
| 106 | + var_update = state_ops.assign_sub(var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) |
| 107 | + return control_flow_ops.group(*[var_update, m_t, v_t, vhat_t]) |
| 108 | + |
| 109 | + def _resource_apply_dense(self, grad, var): |
| 110 | + var = var.handle |
| 111 | + beta1_power = math_ops.cast(self._beta1_power, grad.dtype.base_dtype) |
| 112 | + beta2_power = math_ops.cast(self._beta2_power, grad.dtype.base_dtype) |
| 113 | + lr_t = math_ops.cast(self._lr_t, grad.dtype.base_dtype) |
| 114 | + beta1_t = math_ops.cast(self._beta1_t, grad.dtype.base_dtype) |
| 115 | + beta2_t = math_ops.cast(self._beta2_t, grad.dtype.base_dtype) |
| 116 | + epsilon_t = math_ops.cast(self._epsilon_t, grad.dtype.base_dtype) |
| 117 | + |
| 118 | + lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) |
| 119 | + |
| 120 | + # m_t = beta1 * m + (1 - beta1) * g_t |
| 121 | + m = self.get_slot(var, "m").handle |
| 122 | + m_scaled_g_values = grad * (1 - beta1_t) |
| 123 | + m_t = state_ops.assign(m, beta1_t * m + m_scaled_g_values, use_locking=self._use_locking) |
| 124 | + |
| 125 | + # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) |
| 126 | + v = self.get_slot(var, "v").handle |
| 127 | + v_scaled_g_values = (grad * grad) * (1 - beta2_t) |
| 128 | + v_t = state_ops.assign(v, beta2_t * v + v_scaled_g_values, use_locking=self._use_locking) |
| 129 | + |
| 130 | + # amsgrad |
| 131 | + vhat = self.get_slot(var, "vhat").handle |
| 132 | + vhat_t = state_ops.assign(vhat, math_ops.maximum(v_t, vhat)) |
| 133 | + v_sqrt = math_ops.sqrt(vhat_t) |
| 134 | + |
| 135 | + var_update = state_ops.assign_sub(var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) |
| 136 | + return control_flow_ops.group(*[var_update, m_t, v_t, vhat_t]) |
| 137 | + |
| 138 | + def _apply_sparse_shared(self, grad, var, indices, scatter_add): |
| 139 | + beta1_power = math_ops.cast(self._beta1_power, var.dtype.base_dtype) |
| 140 | + beta2_power = math_ops.cast(self._beta2_power, var.dtype.base_dtype) |
| 141 | + lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) |
| 142 | + beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) |
| 143 | + beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) |
| 144 | + epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) |
| 145 | + |
| 146 | + lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) |
| 147 | + |
| 148 | + # m_t = beta1 * m + (1 - beta1) * g_t |
| 149 | + m = self.get_slot(var, "m") |
| 150 | + m_scaled_g_values = grad * (1 - beta1_t) |
| 151 | + m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) |
| 152 | + with ops.control_dependencies([m_t]): |
| 153 | + m_t = scatter_add(m, indices, m_scaled_g_values) |
| 154 | + |
| 155 | + # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) |
| 156 | + v = self.get_slot(var, "v") |
| 157 | + v_scaled_g_values = (grad * grad) * (1 - beta2_t) |
| 158 | + v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking) |
| 159 | + with ops.control_dependencies([v_t]): |
| 160 | + v_t = scatter_add(v, indices, v_scaled_g_values) |
| 161 | + |
| 162 | + # amsgrad |
| 163 | + vhat = self.get_slot(var, "vhat") |
| 164 | + vhat_t = state_ops.assign(vhat, math_ops.maximum(v_t, vhat)) |
| 165 | + v_sqrt = math_ops.sqrt(vhat_t) |
| 166 | + var_update = state_ops.assign_sub(var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) |
| 167 | + return control_flow_ops.group(*[var_update, m_t, v_t, vhat_t]) |
| 168 | + |
| 169 | + def _apply_sparse(self, grad, var): |
| 170 | + return self._apply_sparse_shared( |
| 171 | + grad.values, |
| 172 | + var, |
| 173 | + grad.indices, |
| 174 | + lambda x, i, v: state_ops. |
| 175 | + scatter_add( # pylint: disable=g-long-lambda |
| 176 | + x, i, v, use_locking=self._use_locking |
| 177 | + ) |
| 178 | + ) |
| 179 | + |
| 180 | + def _resource_scatter_add(self, x, i, v): |
| 181 | + with ops.control_dependencies([resource_variable_ops.resource_scatter_add(x.handle, i, v)]): |
| 182 | + return x.value() |
| 183 | + |
| 184 | + def _resource_apply_sparse(self, grad, var, indices): |
| 185 | + return self._apply_sparse_shared(grad, var, indices, self._resource_scatter_add) |
| 186 | + |
| 187 | + def _finish(self, update_ops, name_scope): |
| 188 | + # Update the power accumulators. |
| 189 | + with ops.control_dependencies(update_ops): |
| 190 | + with ops.colocate_with(self._beta1_power): |
| 191 | + update_beta1 = self._beta1_power.assign( |
| 192 | + self._beta1_power * self._beta1_t, use_locking=self._use_locking |
| 193 | + ) |
| 194 | + update_beta2 = self._beta2_power.assign( |
| 195 | + self._beta2_power * self._beta2_t, use_locking=self._use_locking |
| 196 | + ) |
| 197 | + return control_flow_ops.group(*update_ops + [update_beta1, update_beta2], name=name_scope) |
0 commit comments