You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+19-21Lines changed: 19 additions & 21 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -137,27 +137,26 @@ We provide many helper functions (like `fit()` , `test()`) that is similar to Ke
137
137
Examples can be found [in this repository](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [TensorLayer Topic](https://github.com/search?q=topic%3Atensorlayer&type=Repositories).
138
138
139
139
## Basics
140
-
- Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see ``tutorial_mnist_simple.py``.
140
+
- Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see [tutorial\_mnist\_simple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py).
141
141
142
142
## Computer Vision
143
-
- Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see ``tutorial_mnist.py``.
144
-
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see ``tutorial_mnist.py``.
145
-
- Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see ``tutorial_mnist.py``.
146
-
- Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see ``tutorial_cifar10.py`` and ``tutorial_cifar10_tfrecord.py``.
147
-
- VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see ``tutorial_vgg16.py``.
148
-
- VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see ``tutorial_vgg19.py``.
149
-
- InceptionV3 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see ``tutorial_inceptionV3_tfslim.py``.
143
+
- Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
144
+
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
145
+
- Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
146
+
- Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see [tutorial\_cifar10.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
147
+
- VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see [tutorial_vgg16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py).
148
+
- VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see [tutorial_vgg19.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py).
149
+
- InceptionV3 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
150
150
- Wide ResNet (CIFAR) by [ritchieng](https://github.com/ritchieng/wideresnet-tensorlayer).
151
151
- More CNN implementations of [TF-Slim](https://github.com/tensorflow/models/tree/master/slim#pre-trained-models) can be connected to TensorLayer via SlimNetsLayer.
152
152
-[Spatial Transformer Networks](https://arxiv.org/abs/1506.02025) by [zsdonghao](https://github.com/zsdonghao/Spatial-Transformer-Nets).
153
153
-[U-Net for brain tumor segmentation](https://github.com/zsdonghao/u-net-brain-tumor) by [zsdonghao](https://github.com/zsdonghao/u-net-brain-tumor).
154
154
155
155
## Natural Language Processing
156
-
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see ``tutorial_ptb_lstm_state_is_tuple.py``.
157
-
- Word Embedding - Word2vec. Train a word embedding matrix, see ``tutorial_word2vec_basic.py``.
158
-
- Restore Embedding matrix. Restore a pre-train embedding matrix, see ``tutorial_generate_text.py``.
159
-
- Text Generation. Generates new text scripts, using LSTM network, see ``tutorial_generate_text.py``.
160
-
- Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT English-to-French translation data, see ``tutorial_translate.py``.
156
+
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see [tutorial_ptb_lstm.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm.py) and [tutorial\_ptb\_lstm\_state\_is_tuple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py).
157
+
- Word Embedding - Word2vec. Train a word embedding matrix, see [tutorial\_word2vec_basic.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py).
158
+
- Restore Embedding matrix. Restore a pre-train embedding matrix, see [tutorial\_generate_text.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py).
159
+
- Text Generation. Generates new text scripts, using LSTM network, see [tutorial\_generate_text.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py).
161
160
162
161
## Adversarial Learning
163
162
- DCGAN - Generating images by [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) by [zsdonghao](https://github.com/zsdonghao/dcgan).
@@ -166,9 +165,9 @@ Examples can be found [in this repository](https://github.com/zsdonghao/tensorla
166
165
-[Super Resolution GAN](https://arxiv.org/abs/1609.04802) by [zsdonghao](https://github.com/zsdonghao/SRGAN).
167
166
168
167
## Reinforcement Learning
169
-
- Policy Gradient / Network - Pong Game. Teach a machine to play Pong games, see ``tutorial_atari_pong.py``.
170
-
- Q-Network - Frozen lake, see ``tutorial_frozenlake_q_network.py``.
171
-
- Q-Table learning algorithm - Frozen lake, see ``tutorial_frozenlake_q_table.py``.
-Deep Q-Network - Frozen lake, see [tutorial\_frozenlake_dqn.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_dqn.py).
170
+
- Q-Table learning algorithm - Frozen lake, see [tutorial\_frozenlake\_q_table.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_q_table.py).
172
171
- Asynchronous Deep Reinforcement Learning - Pong Game by [nebulaV](https://github.com/akaraspt/tl_paper).
173
172
174
173
@@ -177,11 +176,10 @@ Examples can be found [in this repository](https://github.com/zsdonghao/tensorla
177
176
- A simple web service - [TensorFlask](https://github.com/JoelKronander/TensorFlask) by [JoelKronander](https://github.com/JoelKronander).
178
177
179
178
## Special Examples
180
-
- Merge TF-Slim into TensorLayer. ``tutorial_inceptionV3_tfslim.py``.
181
-
- Merge Keras into TensorLayer. ``tutorial_keras.py``.
- Data augmentation with TFRecord. Effective way to load and pre-process data, see ``tutorial_tfrecord*.py`` and ``tutorial_cifar10_tfrecord.py``.
184
-
- Data augmentation with TensorLayer, see ``tutorial_image_preprocess.py``.
179
+
- Merge TF-Slim into TensorLayer. [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
180
+
- Merge Keras into TensorLayer. [tutorial_keras.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py).
181
+
- Data augmentation with TFRecord. Effective way to load and pre-process data, see [tutorial_tfrecord*.py](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
182
+
- Data augmentation with TensorLayer, see [tutorial\_image_preprocess.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py).
185
183
- TensorDB by [fangde](https://github.com/fangde) see [here](https://github.com/akaraspt/tl_paper).
Copy file name to clipboardExpand all lines: docs/user/example.rst
+19-21Lines changed: 19 additions & 21 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -8,18 +8,18 @@ Example
8
8
Basics
9
9
============
10
10
11
-
- Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see ``tutorial_mnist_simple.py`` on `GitHub`_.
11
+
- Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see `tutorial_mnist_simple.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_.
12
12
13
13
Computer Vision
14
14
==================
15
15
16
-
- Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see ``tutorial_mnist.py`` on `GitHub`_.
17
-
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see ``tutorial_mnist.py`` on `GitHub`_.
18
-
- Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see ``tutorial_mnist.py`` on `GitHub`_.
19
-
- Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see ``tutorial_cifar10.py`` and ``tutorial_cifar10_tfrecord.py``on `GitHub`_.
20
-
- VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see ``tutorial_vgg16.py`` on `GitHub`_.
21
-
- VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see ``tutorial_vgg19.py`` on `GitHub`_.
22
-
- InceptionV3 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see ``tutorial_inceptionV3_tfslim.py`` on `GitHub`_.
16
+
- Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see `tutorial_mnist.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`_.
17
+
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see `tutorial_mnist.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`_.
18
+
- Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see `tutorial_mnist.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`_.
19
+
- Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see `tutorial_cifar10.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py>`_ and `tutorial_cifar10_tfrecord.py<tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py>`_.
20
+
- VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see `tutorial_vgg16.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py>`_.
21
+
- VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see `tutorial_vgg19.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py>`_.
22
+
- InceptionV3 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see `tutorial_inceptionV3_tfslim.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`_.
23
23
- Wide ResNet (CIFAR) by `ritchieng <https://github.com/ritchieng/wideresnet-tensorlayer>`_.
24
24
- More CNN implementations of `TF-Slim <https://github.com/tensorflow/models/tree/master/slim#pre-trained-models>`_ can be connected to TensorLayer via SlimNetsLayer.
25
25
- `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`_ by `zsdonghao <https://github.com/zsdonghao/Spatial-Transformer-Nets>`_.
@@ -29,11 +29,10 @@ Computer Vision
29
29
Natural Language Processing
30
30
==============================
31
31
32
-
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see ``tutorial_ptb_lstm_state_is_tuple.py`` on `GitHub`_.
33
-
- Word Embedding - Word2vec. Train a word embedding matrix, see ``tutorial_word2vec_basic.py`` on `GitHub`_.
34
-
- Restore Embedding matrix. Restore a pre-train embedding matrix, see ``tutorial_generate_text.py`` on `GitHub`_.
35
-
- Text Generation. Generates new text scripts, using LSTM network, see ``tutorial_generate_text.py`` on `GitHub`_.
36
-
- Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT English-to-French translation data, see ``tutorial_translate.py`` on `GitHub`_.
32
+
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see `tutorial_ptb_lstm_state_is_tuple.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`_.
33
+
- Word Embedding - Word2vec. Train a word embedding matrix, see `tutorial_word2vec_basic.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py>`_.
34
+
- Restore Embedding matrix. Restore a pre-train embedding matrix, see `tutorial_generate_text.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py>`_.
35
+
- Text Generation. Generates new text scripts, using LSTM network, see `tutorial_generate_text.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py>`_.
37
36
38
37
Adversarial Learning
39
38
========================
@@ -45,9 +44,9 @@ Adversarial Learning
45
44
Reinforcement Learning
46
45
==============================
47
46
48
-
- Policy Gradient / Network - Pong Game. Teach a machine to play Pong games, see ``tutorial_atari_pong.py`` on `GitHub`_.
49
-
- Q-Network - Frozen lake, see ``tutorial_frozenlake_q_network.py`` on `GitHub`_.
50
-
- Q-Table learning algorithm - Frozen lake, see ``tutorial_frozenlake_q_table.py`` on `GitHub`_.
47
+
- Policy Gradient / Network - Pong Game. Teach a machine to play Pong games, see `tutorial_atari_pong.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py>`_.
48
+
- Deep Q-Network - Frozen lake, see `tutorial_frozenlake_dqn.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_dqn.py>`_.
49
+
- Q-Table learning algorithm - Frozen lake, see `tutorial_frozenlake_q_table.py<https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_q_table.py>`_.
51
50
- Asynchronous Deep Reinforcement Learning - Pong Game by `nebulaV <https://github.com/akaraspt/tl_paper>`_.
52
51
53
52
Applications
@@ -59,11 +58,10 @@ Applications
59
58
Special Examples
60
59
=================
61
60
62
-
- Merge TF-Slim into TensorLayer. ``tutorial_inceptionV3_tfslim.py`` on `GitHub`_.
63
-
- Merge Keras into TensorLayer. ``tutorial_keras.py`` on `GitHub`_.
64
-
- MultiplexerLayer. ``tutorial_mnist_multiplexer.py`` on `GitHub`_.
65
-
- Data augmentation with TFRecord. Effective way to load and pre-process data, see ``tutorial_tfrecord*.py`` and ``tutorial_cifar10_tfrecord.py`` on `GitHub`_.
66
-
- Data augmentation with TensorLayer, see ``tutorial_image_preprocess.py`` on `GitHub`_.
61
+
- Merge TF-Slim into TensorLayer. `tutorial_inceptionV3_tfslim.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`_.
62
+
- Merge Keras into TensorLayer. `tutorial_keras.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py>`_.
63
+
- Data augmentation with TFRecord. Effective way to load and pre-process data, see `tutorial_tfrecord*.py <https://github.com/zsdonghao/tensorlayer/tree/master/example>`_ and `tutorial_cifar10_tfrecord.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py>`_.
64
+
- Data augmentation with TensorLayer, see `tutorial_image_preprocess.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py>`_.
67
65
- TensorDB by `fangde <https://github.com/fangde>`_ see `here <https://github.com/akaraspt/tl_paper>`_.
0 commit comments