@@ -150,21 +150,21 @@ def ResNet50(pretrained=False, end_with='fc1000', n_classes=1000, name=None):
150
150
n = BatchNorm (name = 'bn_conv1' , act = 'relu' )(n )
151
151
n = MaxPool2d ((3 , 3 ), strides = (2 , 2 ), name = 'max_pool1' )(n )
152
152
153
- for i , block_name in enumerate (block_names ):
154
- if len (block_name ) == 2 :
155
- stage = int (block_name [0 ])
156
- block = block_name [1 ]
153
+ for i , name in enumerate (block_names ):
154
+ if len (name ) == 2 :
155
+ stage = int (name [0 ])
156
+ block = name [1 ]
157
157
if block == 'a' :
158
158
strides = (1 , 1 ) if stage == 2 else (2 , 2 )
159
159
n = conv_block (n , 3 , block_filters [stage - 2 ], stage = stage , block = block , strides = strides )
160
160
else :
161
161
n = identity_block (n , 3 , block_filters [stage - 2 ], stage = stage , block = block )
162
- elif block_name == 'avg_pool' :
162
+ elif name == 'avg_pool' :
163
163
n = GlobalMeanPool2d (name = 'avg_pool' )(n )
164
- elif block_name == 'fc1000' :
164
+ elif name == 'fc1000' :
165
165
n = Dense (n_classes , name = 'fc1000' )(n )
166
166
167
- if block_name == end_with :
167
+ if name == end_with :
168
168
break
169
169
170
170
network = Model (inputs = ni , outputs = n , name = name )
0 commit comments