@@ -1615,12 +1615,19 @@ class DepthwiseConv2d(Layer):
16151615
16161616 Examples
16171617 ---------
1618- >>> x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1], name='x')
1619- >>> net = InputLayer(x, name='in')
1620- >>> net = Conv2d(net, 32, (3, 3), (1, 1), name='conv1')
1621- >>> net = MaxPool2d(net, (2, 2), name='pool1')
1622- >>> net = DepthwiseConv2d(net, (3, 3), (1, 1), act=tf.nn.relu, name='dethwise1')
1623- >>> net = Conv2d(net, 64, (1, 1), (1, 1), act=tf.nn.relu, name='conv2')
1618+ >>> net = InputLayer(x, name='input')
1619+ >>> net = Conv2d(net, 32, (3, 3), (2, 2), b_init=None, name='cin')
1620+ >>> net = BatchNormLayer(net, act=tf.nn.relu, is_train=is_train, name='bnin')
1621+ ...
1622+ >>> net = DepthwiseConv2d(net, (3, 3), (1, 1), b_init=None, name='cdw1')
1623+ >>> net = BatchNormLayer(net, act=tf.nn.relu, is_train=is_train, name='bn11')
1624+ >>> net = Conv2d(net, 64, (1, 1), (1, 1), b_init=None, name='c1')
1625+ >>> net = BatchNormLayer(net, act=tf.nn.relu, is_train=is_train, name='bn12')
1626+ ...
1627+ >>> net = DepthwiseConv2d(net, (3, 3), (2, 2), b_init=None, name='cdw2')
1628+ >>> net = BatchNormLayer(net, act=tf.nn.relu, is_train=is_train, name='bn21')
1629+ >>> net = Conv2d(net, 128, (1, 1), (1, 1), b_init=None, name='c2')
1630+ >>> net = BatchNormLayer(net, act=tf.nn.relu, is_train=is_train, name='bn22')
16241631
16251632 References
16261633 -----------
0 commit comments