@@ -31,6 +31,7 @@ class PoolLayer(Layer):
3131 The :class:`PoolLayer` class is a Pooling layer.
3232 You can choose ``tf.nn.max_pool`` and ``tf.nn.avg_pool`` for 2D input or
3333 ``tf.nn.max_pool3d`` and ``tf.nn.avg_pool3d`` for 3D input.
34+
3435 Parameters
3536 ----------
3637 filter_size : tuple of int
@@ -46,12 +47,15 @@ class PoolLayer(Layer):
4647 See `TensorFlow pooling APIs <https://tensorflow.google.cn/versions/r2.0/api_docs/python/tf/nn/>`__
4748 name : None or str
4849 A unique layer name.
50+
4951 Examples
5052 ---------
5153 With TensorLayer
54+
5255 >>> net = tl.layers.Input([None, 50, 50, 32], name='input')
5356 >>> net = tl.layers.PoolLayer()(net)
5457 >>> output shape : [None, 25, 25, 32]
58+
5559 """
5660
5761 def __init__ (
@@ -93,6 +97,7 @@ def forward(self, inputs):
9397
9498class MaxPool1d (Layer ):
9599 """Max pooling for 1D signal.
100+
96101 Parameters
97102 ----------
98103 filter_size : int
@@ -105,12 +110,15 @@ class MaxPool1d(Layer):
105110 One of channels_last (default, [batch, length, channel]) or channels_first. The ordering of the dimensions in the inputs.
106111 name : None or str
107112 A unique layer name.
113+
108114 Examples
109115 ---------
110116 With TensorLayer
117+
111118 >>> net = tl.layers.Input([None, 50, 32], name='input')
112119 >>> net = tl.layers.MaxPool1d(filter_size=3, strides=2, padding='SAME', name='maxpool1d')(net)
113120 >>> output shape : [None, 25, 32]
121+
114122 """
115123
116124 def __init__ (
@@ -174,6 +182,7 @@ def forward(self, inputs):
174182
175183class MeanPool1d (Layer ):
176184 """Mean pooling for 1D signal.
185+
177186 Parameters
178187 ------------
179188 filter_size : int
@@ -186,12 +195,15 @@ class MeanPool1d(Layer):
186195 One of channels_last (default, [batch, length, channel]) or channels_first. The ordering of the dimensions in the inputs.
187196 name : None or str
188197 A unique layer name.
198+
189199 Examples
190200 ---------
191201 With TensorLayer
202+
192203 >>> net = tl.layers.Input([None, 50, 32], name='input')
193204 >>> net = tl.layers.MeanPool1d(filter_size=3, strides=2, padding='SAME')(net)
194205 >>> output shape : [None, 25, 32]
206+
195207 """
196208
197209 def __init__ (
@@ -256,6 +268,7 @@ def forward(self, inputs):
256268
257269class MaxPool2d (Layer ):
258270 """Max pooling for 2D image.
271+
259272 Parameters
260273 -----------
261274 filter_size : tuple of int
@@ -268,12 +281,15 @@ class MaxPool2d(Layer):
268281 One of channels_last (default, [batch, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
269282 name : None or str
270283 A unique layer name.
284+
271285 Examples
272286 ---------
273287 With TensorLayer
288+
274289 >>> net = tl.layers.Input([None, 50, 50, 32], name='input')
275290 >>> net = tl.layers.MaxPool2d(filter_size=(3, 3), strides=(2, 2), padding='SAME')(net)
276291 >>> output shape : [None, 25, 25, 32]
292+
277293 """
278294
279295 def __init__ (
@@ -327,6 +343,7 @@ def forward(self, inputs):
327343
328344class MeanPool2d (Layer ):
329345 """Mean pooling for 2D image [batch, height, width, channel].
346+
330347 Parameters
331348 -----------
332349 filter_size : tuple of int
@@ -339,12 +356,15 @@ class MeanPool2d(Layer):
339356 One of channels_last (default, [batch, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
340357 name : None or str
341358 A unique layer name.
359+
342360 Examples
343361 ---------
344362 With TensorLayer
363+
345364 >>> net = tl.layers.Input([None, 50, 50, 32], name='input')
346365 >>> net = tl.layers.MeanPool2d(filter_size=(3, 3), strides=(2, 2), padding='SAME')(net)
347366 >>> output shape : [None, 25, 25, 32]
367+
348368 """
349369
350370 def __init__ (
@@ -398,6 +418,7 @@ def forward(self, inputs):
398418
399419class MaxPool3d (Layer ):
400420 """Max pooling for 3D volume.
421+
401422 Parameters
402423 ------------
403424 filter_size : tuple of int
@@ -410,16 +431,20 @@ class MaxPool3d(Layer):
410431 One of channels_last (default, [batch, depth, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
411432 name : None or str
412433 A unique layer name.
434+
413435 Returns
414436 -------
415437 :class:`tf.Tensor`
416438 A max pooling 3-D layer with a output rank as 5.
439+
417440 Examples
418441 ---------
419442 With TensorLayer
443+
420444 >>> net = tl.layers.Input([None, 50, 50, 50, 32], name='input')
421445 >>> net = tl.layers.MaxPool3d(filter_size=(3, 3, 3), strides=(2, 2, 2), padding='SAME')(net)
422446 >>> output shape : [None, 25, 25, 25, 32]
447+
423448 """
424449
425450 def __init__ (
@@ -475,6 +500,7 @@ def forward(self, inputs):
475500
476501class MeanPool3d (Layer ):
477502 """Mean pooling for 3D volume.
503+
478504 Parameters
479505 ------------
480506 filter_size : tuple of int
@@ -487,16 +513,20 @@ class MeanPool3d(Layer):
487513 One of channels_last (default, [batch, depth, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
488514 name : None or str
489515 A unique layer name.
516+
490517 Returns
491518 -------
492519 :class:`tf.Tensor`
493520 A mean pooling 3-D layer with a output rank as 5.
521+
494522 Examples
495523 ---------
496524 With TensorLayer
525+
497526 >>> net = tl.layers.Input([None, 50, 50, 50, 32], name='input')
498527 >>> net = tl.layers.MeanPool3d(filter_size=(3, 3, 3), strides=(2, 2, 2), padding='SAME')(net)
499528 >>> output shape : [None, 25, 25, 25, 32]
529+
500530 """
501531
502532 def __init__ (
@@ -552,18 +582,22 @@ def forward(self, inputs):
552582
553583class GlobalMaxPool1d (Layer ):
554584 """The :class:`GlobalMaxPool1d` class is a 1D Global Max Pooling layer.
585+
555586 Parameters
556587 ------------
557588 data_format : str
558589 One of channels_last (default, [batch, length, channel]) or channels_first. The ordering of the dimensions in the inputs.
559590 name : None or str
560591 A unique layer name.
592+
561593 Examples
562594 ---------
563595 With TensorLayer
596+
564597 >>> net = tl.layers.Input([None, 100, 30], name='input')
565598 >>> net = tl.layers.GlobalMaxPool1d()(net)
566599 >>> output shape : [None, 30]
600+
567601 """
568602
569603 def __init__ (
@@ -604,18 +638,22 @@ def forward(self, inputs):
604638
605639class GlobalMeanPool1d (Layer ):
606640 """The :class:`GlobalMeanPool1d` class is a 1D Global Mean Pooling layer.
641+
607642 Parameters
608643 ------------
609644 data_format : str
610645 One of channels_last (default, [batch, length, channel]) or channels_first. The ordering of the dimensions in the inputs.
611646 name : None or str
612647 A unique layer name.
648+
613649 Examples
614650 ---------
615651 With TensorLayer
652+
616653 >>> net = tl.layers.Input([None, 100, 30], name='input')
617654 >>> net = tl.layers.GlobalMeanPool1d()(net)
618655 >>> output shape : [None, 30]
656+
619657 """
620658
621659 def __init__ (
@@ -655,18 +693,22 @@ def forward(self, inputs):
655693
656694class GlobalMaxPool2d (Layer ):
657695 """The :class:`GlobalMaxPool2d` class is a 2D Global Max Pooling layer.
696+
658697 Parameters
659698 ------------
660699 data_format : str
661700 One of channels_last (default, [batch, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
662701 name : None or str
663702 A unique layer name.
703+
664704 Examples
665705 ---------
666706 With TensorLayer
707+
667708 >>> net = tl.layers.Input([None, 100, 100, 30], name='input')
668709 >>> net = tl.layers.GlobalMaxPool2d()(net)
669710 >>> output shape : [None, 30]
711+
670712 """
671713
672714 def __init__ (
@@ -706,18 +748,22 @@ def forward(self, inputs):
706748
707749class GlobalMeanPool2d (Layer ):
708750 """The :class:`GlobalMeanPool2d` class is a 2D Global Mean Pooling layer.
751+
709752 Parameters
710753 ------------
711754 data_format : str
712755 One of channels_last (default, [batch, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
713756 name : None or str
714757 A unique layer name.
758+
715759 Examples
716760 ---------
717761 With TensorLayer
762+
718763 >>> net = tl.layers.Input([None, 100, 100, 30], name='input')
719764 >>> net = tl.layers.GlobalMeanPool2d()(net)
720765 >>> output shape : [None, 30]
766+
721767 """
722768
723769 def __init__ (
@@ -758,18 +804,22 @@ def forward(self, inputs):
758804
759805class GlobalMaxPool3d (Layer ):
760806 """The :class:`GlobalMaxPool3d` class is a 3D Global Max Pooling layer.
807+
761808 Parameters
762809 ------------
763810 data_format : str
764811 One of channels_last (default, [batch, depth, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
765812 name : None or str
766813 A unique layer name.
814+
767815 Examples
768816 ---------
769817 With TensorLayer
818+
770819 >>> net = tl.layers.Input([None, 100, 100, 100, 30], name='input')
771820 >>> net = tl.layers.GlobalMaxPool3d()(net)
772821 >>> output shape : [None, 30]
822+
773823 """
774824
775825 def __init__ (
@@ -810,18 +860,22 @@ def forward(self, inputs):
810860
811861class GlobalMeanPool3d (Layer ):
812862 """The :class:`GlobalMeanPool3d` class is a 3D Global Mean Pooling layer.
863+
813864 Parameters
814865 ------------
815866 data_format : str
816867 One of channels_last (default, [batch, depth, height, width, channel]) or channels_first. The ordering of the dimensions in the inputs.
817868 name : None or str
818869 A unique layer name.
870+
819871 Examples
820872 ---------
821873 With TensorLayer
874+
822875 >>> net = tl.layers.Input([None, 100, 100, 100, 30], name='input')
823876 >>> net = tl.layers.GlobalMeanPool3d()(net)
824877 >>> output shape : [None, 30]
878+
825879 """
826880
827881 def __init__ (
@@ -861,19 +915,23 @@ def forward(self, inputs):
861915
862916class CornerPool2d (Layer ):
863917 """Corner pooling for 2D image [batch, height, width, channel], see `here <https://arxiv.org/abs/1808.01244>`__.
918+
864919 Parameters
865920 ----------
866921 mode : str
867922 TopLeft for the top left corner,
868923 Bottomright for the bottom right corner.
869924 name : None or str
870925 A unique layer name.
926+
871927 Examples
872928 ---------
873929 With TensorLayer
930+
874931 >>> net = tl.layers.Input([None, 32, 32, 8], name='input')
875932 >>> net = tl.layers.CornerPool2d(mode='TopLeft',name='cornerpool2d')(net)
876933 >>> output shape : [None, 32, 32, 8]
934+
877935 """
878936
879937 def __init__ (
0 commit comments