@@ -61,13 +61,13 @@ def main_test_layers(model='relu'):
6161 network = tl .layers .InputLayer (x , name = 'input' )
6262 network = tl .layers .DropoutLayer (network , keep = 0.8 , name = 'drop1' )
6363 network = tl .layers .DenseLayer (network , n_units = 800 ,
64- act = tf .nn .relu , name = 'relu1' )
64+ act = tf .nn .relu , name = 'relu1' )
6565 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'drop2' )
6666 network = tl .layers .DenseLayer (network , n_units = 800 ,
67- act = tf .nn .relu , name = 'relu2' )
67+ act = tf .nn .relu , name = 'relu2' )
6868 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'drop3' )
6969 network = tl .layers .DenseLayer (network , n_units = 10 ,
70- act = tf .identity ,
70+ act = tf .identity ,
7171 name = 'output' )
7272 elif model == 'dropconnect' :
7373 network = tl .layers .InputLayer (x , name = 'input' )
@@ -79,7 +79,7 @@ def main_test_layers(model='relu'):
7979 name = 'dropconnect_relu2' )
8080 network = tl .layers .DropconnectDenseLayer (network , keep = 0.5 ,
8181 n_units = 10 ,
82- act = tf .identity ,
82+ act = tf .identity ,
8383 name = 'output' )
8484
8585 # To print all attributes of a Layer.
@@ -295,20 +295,18 @@ def main_test_stacked_denoise_AE(model='relu'):
295295 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'denoising1' )
296296 # 1st layer
297297 network = tl .layers .DropoutLayer (network , keep = 0.8 , name = 'drop1' )
298- network = tl .layers .DenseLayer (network , n_units = 800 , act = act , name = model + '1' )
298+ network = tl .layers .DenseLayer (network , n_units = 800 , act = act , name = model + '1' )
299299 x_recon1 = network .outputs
300300 recon_layer1 = tl .layers .ReconLayer (network , x_recon = x , n_units = 784 ,
301- act = act_recon , name = 'recon_layer1' )
301+ act = act_recon , name = 'recon_layer1' )
302302 # 2nd layer
303303 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'drop2' )
304304 network = tl .layers .DenseLayer (network , n_units = 800 , act = act , name = model + '2' )
305305 recon_layer2 = tl .layers .ReconLayer (network , x_recon = x_recon1 , n_units = 800 ,
306- act = act_recon , name = 'recon_layer2' )
306+ act = act_recon , name = 'recon_layer2' )
307307 # 3rd layer
308308 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'drop3' )
309- network = tl .layers .DenseLayer (network , n_units = 10 ,
310- act = tf .identity ,
311- name = 'output' )
309+ network = tl .layers .DenseLayer (network , 10 , act = tf .identity , name = 'output' )
312310
313311 # Define fine-tune process
314312 y = network .outputs
@@ -485,23 +483,20 @@ def main_test_cnn_layer():
485483 # pool = tf.nn.max_pool,
486484 # name ='pool2',) # output: (?, 7, 7, 64)
487485 ## Simplified conv API for beginner (the same with the above layers)
488- network = tl .layers .Conv2d (network , n_filter = 32 , filter_size = (5 , 5 ), strides = (1 , 1 ),
486+ network = tl .layers .Conv2d (network , 32 , (5 , 5 ), (1 , 1 ),
489487 act = tf .nn .relu , padding = 'SAME' , name = 'cnn1' )
490- network = tl .layers .MaxPool2d (network , filter_size = (2 , 2 ), strides = (2 , 2 ),
488+ network = tl .layers .MaxPool2d (network , (2 , 2 ), (2 , 2 ),
491489 padding = 'SAME' , name = 'pool1' )
492- network = tl .layers .Conv2d (network , n_filter = 64 , filter_size = (5 , 5 ), strides = (1 , 1 ),
490+ network = tl .layers .Conv2d (network , 64 , (5 , 5 ), (1 , 1 ),
493491 act = tf .nn .relu , padding = 'SAME' , name = 'cnn2' )
494- network = tl .layers .MaxPool2d (network , filter_size = (2 , 2 ), strides = (2 , 2 ),
492+ network = tl .layers .MaxPool2d (network , (2 , 2 ), (2 , 2 ),
495493 padding = 'SAME' , name = 'pool2' )
496494 ## end of conv
497495 network = tl .layers .FlattenLayer (network , name = 'flatten' )
498496 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'drop1' )
499- network = tl .layers .DenseLayer (network , n_units = 256 ,
500- act = tf .nn .relu , name = 'relu1' )
497+ network = tl .layers .DenseLayer (network , 256 , act = tf .nn .relu , name = 'relu1' )
501498 network = tl .layers .DropoutLayer (network , keep = 0.5 , name = 'drop2' )
502- network = tl .layers .DenseLayer (network , n_units = 10 ,
503- act = tf .identity ,
504- name = 'output' )
499+ network = tl .layers .DenseLayer (network , 10 , act = tf .identity , name = 'output' )
505500
506501 y = network .outputs
507502
0 commit comments