@@ -21,27 +21,27 @@ def setUpClass(self):
2121 self .inputs_shape = [self .batch_size , 100 , 1 ]
2222 self .input_layer = tlx .nn .Input (self .inputs_shape , name = 'input_layer' )
2323
24- self .conv1dlayer1 = tlx .nn .Conv1d (in_channels = 1 , n_filter = 32 , filter_size = 5 , stride = 2 )
24+ self .conv1dlayer1 = tlx .nn .Conv1d (in_channels = 1 , out_channels = 32 , kernel_size = 5 , stride = 2 )
2525 self .n1 = self .conv1dlayer1 (self .input_layer )
2626
27- self .conv1dlayer2 = tlx .nn .Conv1d (in_channels = 32 , n_filter = 32 , filter_size = 5 , stride = 2 )
27+ self .conv1dlayer2 = tlx .nn .Conv1d (in_channels = 32 , out_channels = 32 , kernel_size = 5 , stride = 2 )
2828 self .n2 = self .conv1dlayer2 (self .n1 )
2929
3030 self .dconv1dlayer1 = tlx .nn .DeConv1d (
31- n_filter = 64 , in_channels = 32 , filter_size = 5 , name = 'deconv1dlayer'
31+ out_channels = 64 , in_channels = 32 , kernel_size = 5 , name = 'deconv1dlayer'
3232 )
3333 self .n3 = self .dconv1dlayer1 (self .n2 )
3434
35- self .separableconv1d1 = tlx .nn .SeparableConv1d (in_channels = 1 , n_filter = 16 , filter_size = 3 , stride = 2 )
35+ self .separableconv1d1 = tlx .nn .SeparableConv1d (in_channels = 1 , out_channels = 16 , kernel_size = 3 , stride = 2 )
3636 self .n4 = self .separableconv1d1 (self .input_layer )
3737
3838 self .separableconv1d2 = tlx .nn .SeparableConv1d (
39- in_channels = 1 , n_filter = 16 , filter_size = 3 , stride = 2 , depth_multiplier = 4
39+ in_channels = 1 , out_channels = 16 , kernel_size = 3 , stride = 2 , depth_multiplier = 4
4040 )
4141 self .n5 = self .separableconv1d2 (self .input_layer )
4242
4343 self .separableconv1d3 = tlx .nn .SeparableConv1d (
44- in_channels = 1 , n_filter = 16 , filter_size = 3 , stride = 2 , depth_multiplier = 4 , b_init = None
44+ in_channels = 1 , out_channels = 16 , kernel_size = 3 , stride = 2 , depth_multiplier = 4 , b_init = None
4545 )
4646 self .n6 = self .separableconv1d3 (self .input_layer )
4747
@@ -84,53 +84,53 @@ def setUpClass(self):
8484 self .input_layer = tlx .nn .Input (self .inputs_shape , name = 'input_layer' )
8585
8686 self .conv2dlayer1 = tlx .nn .Conv2d (
87- n_filter = 32 , in_channels = 3 , strides = (2 , 2 ), filter_size = (5 , 5 ), padding = 'SAME' ,
87+ out_channels = 32 , in_channels = 3 , strides = (2 , 2 ), kernel_size = (5 , 5 ), padding = 'SAME' ,
8888 b_init = tensorlayerx .nn .initializers .truncated_normal (0.01 ), name = 'conv2dlayer'
8989 )
9090 self .n1 = self .conv2dlayer1 (self .input_layer )
9191
9292 self .conv2dlayer2 = tlx .nn .Conv2d (
93- n_filter = 32 , in_channels = 32 , filter_size = (3 , 3 ), strides = (2 , 2 ), act = None , name = 'conv2d'
93+ out_channels = 32 , in_channels = 32 , kernel_size = (3 , 3 ), strides = (2 , 2 ), act = None , name = 'conv2d'
9494 )
9595 self .n2 = self .conv2dlayer2 (self .n1 )
9696
9797 self .conv2dlayer3 = tlx .nn .Conv2d (
98- in_channels = 32 , n_filter = 32 , filter_size = (3 , 3 ), strides = (2 , 2 ), act = tlx .ReLU , b_init = None ,
98+ in_channels = 32 , out_channels = 32 , kernel_size = (3 , 3 ), strides = (2 , 2 ), act = tlx .ReLU , b_init = None ,
9999 name = 'conv2d_no_bias'
100100 )
101101 self .n3 = self .conv2dlayer3 (self .n2 )
102102
103103 self .dconv2dlayer = tlx .nn .DeConv2d (
104- n_filter = 32 , in_channels = 32 , filter_size = (5 , 5 ), strides = (2 , 2 ), name = 'deconv2dlayer'
104+ out_channels = 32 , in_channels = 32 , kernel_size = (5 , 5 ), strides = (2 , 2 ), name = 'deconv2dlayer'
105105 )
106106 self .n4 = self .dconv2dlayer (self .n3 )
107107
108108 self .dwconv2dlayer = tlx .nn .DepthwiseConv2d (
109- in_channels = 32 , filter_size = (3 , 3 ), strides = (1 , 1 ), dilation_rate = (2 , 2 ), act = tlx .ReLU , depth_multiplier = 2 ,
109+ in_channels = 32 , kernel_size = (3 , 3 ), strides = (1 , 1 ), dilation_rate = (2 , 2 ), act = tlx .ReLU , depth_multiplier = 2 ,
110110 name = 'depthwise'
111111 )
112112 self .n5 = self .dwconv2dlayer (self .n4 )
113113
114114 self .separableconv2d = tlx .nn .SeparableConv2d (
115- in_channels = 3 , filter_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (2 , 2 ), act = tlx .ReLU , depth_multiplier = 3 ,
115+ in_channels = 3 , kernel_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (2 , 2 ), act = tlx .ReLU , depth_multiplier = 3 ,
116116 name = 'separableconv2d'
117117 )
118118 self .n6 = self .separableconv2d (self .input_layer )
119119
120120 self .groupconv2d = tlx .nn .GroupConv2d (
121- in_channels = 3 , n_filter = 18 , filter_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (3 , 3 ), n_group = 3 ,
121+ in_channels = 3 , out_channels = 18 , kernel_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (3 , 3 ), n_group = 3 ,
122122 act = tlx .ReLU , name = 'groupconv2d'
123123 )
124124 self .n7 = self .groupconv2d (self .input_layer )
125125
126126 self .binaryconv2d = tlx .nn .BinaryConv2d (
127- in_channels = 3 , n_filter = 32 , filter_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (2 , 2 ), act = tlx .ReLU ,
127+ in_channels = 3 , out_channels = 32 , kernel_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (2 , 2 ), act = tlx .ReLU ,
128128 name = 'binaryconv2d'
129129 )
130130 self .n8 = self .binaryconv2d (self .input_layer )
131131
132132 self .dorefaconv2d = tlx .nn .DorefaConv2d (
133- bitA = 2 , bitW = 8 , in_channels = 3 , n_filter = 16 , filter_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (2 , 2 ),
133+ bitA = 2 , bitW = 8 , in_channels = 3 , out_channels = 16 , kernel_size = (3 , 3 ), strides = (2 , 2 ), dilation_rate = (2 , 2 ),
134134 act = tlx .ReLU , name = 'dorefaconv2d'
135135 )
136136 self .n9 = self .dorefaconv2d (self .input_layer )
@@ -188,17 +188,17 @@ def setUpClass(self):
188188 self .input_layer = tlx .nn .Input (self .inputs_shape , name = 'input_layer' )
189189
190190 self .conv3dlayer1 = tlx .nn .Conv3d (
191- n_filter = 32 , in_channels = 3 , filter_size = (2 , 2 , 2 ), strides = (2 , 2 , 2 )
191+ out_channels = 32 , in_channels = 3 , kernel_size = (2 , 2 , 2 ), strides = (2 , 2 , 2 )
192192 )
193193 self .n1 = self .conv3dlayer1 (self .input_layer )
194194
195195 self .deconv3dlayer = tlx .nn .DeConv3d (
196- n_filter = 128 , in_channels = 32 , filter_size = (2 , 2 , 2 ), strides = (2 , 2 , 2 )
196+ out_channels = 128 , in_channels = 32 , kernel_size = (2 , 2 , 2 ), strides = (2 , 2 , 2 )
197197 )
198198 self .n2 = self .deconv3dlayer (self .n1 )
199199
200200 self .conv3dlayer2 = tlx .nn .Conv3d (
201- n_filter = 64 , in_channels = 128 , filter_size = (3 , 3 , 3 ), strides = (3 , 3 , 3 ), act = tlx .ReLU , b_init = None ,
201+ out_channels = 64 , in_channels = 128 , kernel_size = (3 , 3 , 3 ), strides = (3 , 3 , 3 ), act = tlx .ReLU , b_init = None ,
202202 name = 'conv3d_no_bias'
203203 )
204204 self .n3 = self .conv3dlayer2 (self .n2 )
0 commit comments