Skip to content

Commit 71e103b

Browse files
committed
Update unit test
1 parent 0dba212 commit 71e103b

17 files changed

+132
-133
lines changed

tensorlayerx/nn/layers/Transformer.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -513,9 +513,9 @@ def __init__(
513513
self._config.pop("self")
514514
self._config.pop("__class__", None)
515515
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)
516-
self.linear1 = tlx.nn.layers.Dense(in_channels=d_model, n_units=dim_feedforward)
516+
self.linear1 = tlx.nn.layers.Linear(in_features=d_model, out_features=dim_feedforward)
517517
self.dropout1 = tlx.nn.layers.Dropout(float(1.0 - dropout))
518-
self.linear2 = tlx.nn.layers.Dense(in_channels=dim_feedforward, n_units=d_model)
518+
self.linear2 = tlx.nn.layers.Linear(in_features=dim_feedforward, out_features=d_model)
519519

520520
self.norm1 = tlx.nn.layers.LayerNorm(d_model, epsilon=layer_norm_eps)
521521
self.norm2 = tlx.nn.layers.LayerNorm(d_model, epsilon=layer_norm_eps)
@@ -614,8 +614,8 @@ def __init__(
614614
self.norm1 = tlx.nn.layers.LayerNorm(d_model, epsilon=layer_norm_eps)
615615
self.norm2 = tlx.nn.layers.LayerNorm(d_model, epsilon=layer_norm_eps)
616616
self.norm3 = tlx.nn.layers.LayerNorm(d_model, epsilon=layer_norm_eps)
617-
self.linear1 = tlx.nn.layers.Dense(in_channels=d_model, n_units=dim_feedforward)
618-
self.linear2 = tlx.nn.layers.Dense(in_channels=dim_feedforward, n_units=d_model)
617+
self.linear1 = tlx.nn.layers.Linear(in_features=d_model, out_features=dim_feedforward)
618+
self.linear2 = tlx.nn.layers.Linear(in_features=dim_feedforward, out_features=d_model)
619619

620620
if act == 'relu':
621621
self.act = tlx.relu

tests/layers/test_layers_convolution.py

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -21,27 +21,27 @@ def setUpClass(self):
2121
self.inputs_shape = [self.batch_size, 100, 1]
2222
self.input_layer = tlx.nn.Input(self.inputs_shape, name='input_layer')
2323

24-
self.conv1dlayer1 = tlx.nn.Conv1d(in_channels=1, n_filter=32, filter_size=5, stride=2)
24+
self.conv1dlayer1 = tlx.nn.Conv1d(in_channels=1, out_channels=32, kernel_size=5, stride=2)
2525
self.n1 = self.conv1dlayer1(self.input_layer)
2626

27-
self.conv1dlayer2 = tlx.nn.Conv1d(in_channels=32, n_filter=32, filter_size=5, stride=2)
27+
self.conv1dlayer2 = tlx.nn.Conv1d(in_channels=32, out_channels=32, kernel_size=5, stride=2)
2828
self.n2 = self.conv1dlayer2(self.n1)
2929

3030
self.dconv1dlayer1 = tlx.nn.DeConv1d(
31-
n_filter=64, in_channels=32, filter_size=5, name='deconv1dlayer'
31+
out_channels=64, in_channels=32, kernel_size=5, name='deconv1dlayer'
3232
)
3333
self.n3 = self.dconv1dlayer1(self.n2)
3434

35-
self.separableconv1d1 = tlx.nn.SeparableConv1d(in_channels=1, n_filter=16, filter_size=3, stride=2)
35+
self.separableconv1d1 = tlx.nn.SeparableConv1d(in_channels=1, out_channels=16, kernel_size=3, stride=2)
3636
self.n4 = self.separableconv1d1(self.input_layer)
3737

3838
self.separableconv1d2 = tlx.nn.SeparableConv1d(
39-
in_channels=1, n_filter=16, filter_size=3, stride=2, depth_multiplier=4
39+
in_channels=1, out_channels=16, kernel_size=3, stride=2, depth_multiplier=4
4040
)
4141
self.n5 = self.separableconv1d2(self.input_layer)
4242

4343
self.separableconv1d3 = tlx.nn.SeparableConv1d(
44-
in_channels=1, n_filter=16, filter_size=3, stride=2, depth_multiplier=4, b_init=None
44+
in_channels=1, out_channels=16, kernel_size=3, stride=2, depth_multiplier=4, b_init=None
4545
)
4646
self.n6 = self.separableconv1d3(self.input_layer)
4747

@@ -84,53 +84,53 @@ def setUpClass(self):
8484
self.input_layer = tlx.nn.Input(self.inputs_shape, name='input_layer')
8585

8686
self.conv2dlayer1 = tlx.nn.Conv2d(
87-
n_filter=32, in_channels=3, strides=(2, 2), filter_size=(5, 5), padding='SAME',
87+
out_channels=32, in_channels=3, strides=(2, 2), kernel_size=(5, 5), padding='SAME',
8888
b_init=tensorlayerx.nn.initializers.truncated_normal(0.01), name='conv2dlayer'
8989
)
9090
self.n1 = self.conv2dlayer1(self.input_layer)
9191

9292
self.conv2dlayer2 = tlx.nn.Conv2d(
93-
n_filter=32, in_channels=32, filter_size=(3, 3), strides=(2, 2), act=None, name='conv2d'
93+
out_channels=32, in_channels=32, kernel_size=(3, 3), strides=(2, 2), act=None, name='conv2d'
9494
)
9595
self.n2 = self.conv2dlayer2(self.n1)
9696

9797
self.conv2dlayer3 = tlx.nn.Conv2d(
98-
in_channels=32, n_filter=32, filter_size=(3, 3), strides=(2, 2), act=tlx.ReLU, b_init=None,
98+
in_channels=32, out_channels=32, kernel_size=(3, 3), strides=(2, 2), act=tlx.ReLU, b_init=None,
9999
name='conv2d_no_bias'
100100
)
101101
self.n3 = self.conv2dlayer3(self.n2)
102102

103103
self.dconv2dlayer = tlx.nn.DeConv2d(
104-
n_filter=32, in_channels=32, filter_size=(5, 5), strides=(2, 2), name='deconv2dlayer'
104+
out_channels=32, in_channels=32, kernel_size=(5, 5), strides=(2, 2), name='deconv2dlayer'
105105
)
106106
self.n4 = self.dconv2dlayer(self.n3)
107107

108108
self.dwconv2dlayer = tlx.nn.DepthwiseConv2d(
109-
in_channels=32, filter_size=(3, 3), strides=(1, 1), dilation_rate=(2, 2), act=tlx.ReLU, depth_multiplier=2,
109+
in_channels=32, kernel_size=(3, 3), strides=(1, 1), dilation_rate=(2, 2), act=tlx.ReLU, depth_multiplier=2,
110110
name='depthwise'
111111
)
112112
self.n5 = self.dwconv2dlayer(self.n4)
113113

114114
self.separableconv2d = tlx.nn.SeparableConv2d(
115-
in_channels=3, filter_size=(3, 3), strides=(2, 2), dilation_rate=(2, 2), act=tlx.ReLU, depth_multiplier=3,
115+
in_channels=3, kernel_size=(3, 3), strides=(2, 2), dilation_rate=(2, 2), act=tlx.ReLU, depth_multiplier=3,
116116
name='separableconv2d'
117117
)
118118
self.n6 = self.separableconv2d(self.input_layer)
119119

120120
self.groupconv2d = tlx.nn.GroupConv2d(
121-
in_channels=3, n_filter=18, filter_size=(3, 3), strides=(2, 2), dilation_rate=(3, 3), n_group=3,
121+
in_channels=3, out_channels=18, kernel_size=(3, 3), strides=(2, 2), dilation_rate=(3, 3), n_group=3,
122122
act=tlx.ReLU, name='groupconv2d'
123123
)
124124
self.n7 = self.groupconv2d(self.input_layer)
125125

126126
self.binaryconv2d = tlx.nn.BinaryConv2d(
127-
in_channels=3, n_filter=32, filter_size=(3, 3), strides=(2, 2), dilation_rate=(2, 2), act=tlx.ReLU,
127+
in_channels=3, out_channels=32, kernel_size=(3, 3), strides=(2, 2), dilation_rate=(2, 2), act=tlx.ReLU,
128128
name='binaryconv2d'
129129
)
130130
self.n8 = self.binaryconv2d(self.input_layer)
131131

132132
self.dorefaconv2d = tlx.nn.DorefaConv2d(
133-
bitA=2, bitW=8, in_channels=3, n_filter=16, filter_size=(3, 3), strides=(2, 2), dilation_rate=(2, 2),
133+
bitA=2, bitW=8, in_channels=3, out_channels=16, kernel_size=(3, 3), strides=(2, 2), dilation_rate=(2, 2),
134134
act=tlx.ReLU, name='dorefaconv2d'
135135
)
136136
self.n9 = self.dorefaconv2d(self.input_layer)
@@ -188,17 +188,17 @@ def setUpClass(self):
188188
self.input_layer = tlx.nn.Input(self.inputs_shape, name='input_layer')
189189

190190
self.conv3dlayer1 = tlx.nn.Conv3d(
191-
n_filter=32, in_channels=3, filter_size=(2, 2, 2), strides=(2, 2, 2)
191+
out_channels=32, in_channels=3, kernel_size=(2, 2, 2), strides=(2, 2, 2)
192192
)
193193
self.n1 = self.conv3dlayer1(self.input_layer)
194194

195195
self.deconv3dlayer = tlx.nn.DeConv3d(
196-
n_filter=128, in_channels=32, filter_size=(2, 2, 2), strides=(2, 2, 2)
196+
out_channels=128, in_channels=32, kernel_size=(2, 2, 2), strides=(2, 2, 2)
197197
)
198198
self.n2 = self.deconv3dlayer(self.n1)
199199

200200
self.conv3dlayer2 = tlx.nn.Conv3d(
201-
n_filter=64, in_channels=128, filter_size=(3, 3, 3), strides=(3, 3, 3), act=tlx.ReLU, b_init=None,
201+
out_channels=64, in_channels=128, kernel_size=(3, 3, 3), strides=(3, 3, 3), act=tlx.ReLU, b_init=None,
202202
name='conv3d_no_bias'
203203
)
204204
self.n3 = self.conv3dlayer2(self.n2)

tests/layers/test_layers_core_act.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -19,53 +19,53 @@ def setUpClass(self):
1919
self.input_layer = tlx.nn.Input(self.inputs_shape, name='input_layer')
2020

2121
self.conv2dlayer1 = tlx.nn.Conv2d(
22-
n_filter=32, in_channels=3, act=tlx.ReLU, filter_size=(5, 5), strides=(2, 2), padding='SAME',
22+
out_channels=32, in_channels=3, act=tlx.ReLU, kernel_size=(5, 5), strides=(2, 2), padding='SAME',
2323
b_init=tensorlayerx.nn.initializers.constant(value=0.0), name='conv2dlayer'
2424
)
2525
self.n1 = self.conv2dlayer1(self.input_layer)
2626

2727
self.conv2dlayer2 = tlx.nn.Conv2d(
28-
n_filter=32, in_channels=32, filter_size=(3, 3), strides=(2, 2), act="relu", name='conv2d'
28+
out_channels=32, in_channels=32, kernel_size=(3, 3), strides=(2, 2), act="relu", name='conv2d'
2929
)
3030
self.n2 = self.conv2dlayer2(self.n1)
3131

3232
self.conv2dlayer3 = tlx.nn.Conv2d(
33-
n_filter=32, in_channels=32, filter_size=(3, 3), strides=(2, 2), act="leaky_relu", b_init=None
33+
out_channels=32, in_channels=32, kernel_size=(3, 3), strides=(2, 2), act="leaky_relu", b_init=None
3434
)
3535
self.n3 = self.conv2dlayer3(self.n2)
3636

3737
self.conv2dlayer4 = tlx.nn.Conv2d(
38-
n_filter=32, in_channels=32, filter_size=(3, 3), strides=(2, 2), act="lrelu", b_init=None
38+
out_channels=32, in_channels=32, kernel_size=(3, 3), strides=(2, 2), act="lrelu", b_init=None
3939
)
4040
self.n4 = self.conv2dlayer4(self.n3)
4141

4242
self.conv2dlayer5 = tlx.nn.Conv2d(
43-
n_filter=32, in_channels=32, filter_size=(3, 3), strides=(2, 2), act="sigmoid"
43+
out_channels=32, in_channels=32, kernel_size=(3, 3), strides=(2, 2), act="sigmoid"
4444
)
4545
self.n5 = self.conv2dlayer5(self.n4)
4646

4747
self.conv2dlayer6 = tlx.nn.Conv2d(
48-
n_filter=32, in_channels=32, filter_size=(3, 3), strides=(2, 2), act="tanh"
48+
out_channels=32, in_channels=32, kernel_size=(3, 3), strides=(2, 2), act="tanh"
4949
)
5050
self.n6 = self.conv2dlayer6(self.n5)
5151

5252
self.conv2dlayer7 = tlx.nn.Conv2d(
53-
n_filter=32, filter_size=(3, 3), strides=(2, 2), act="leaky_relu0.22", in_channels=32
53+
out_channels=32, kernel_size=(3, 3), strides=(2, 2), act="leaky_relu0.22", in_channels=32
5454
)
5555
self.n7 = self.conv2dlayer7(self.n6)
5656

5757
self.conv2dlayer8 = tlx.nn.Conv2d(
58-
n_filter=32, filter_size=(3, 3), strides=(2, 2), act="lrelu0.22", in_channels=32
58+
out_channels=32, kernel_size=(3, 3), strides=(2, 2), act="lrelu0.22", in_channels=32
5959
)
6060
self.n8 = self.conv2dlayer8(self.n7)
6161

6262
self.conv2dlayer9 = tlx.nn.Conv2d(
63-
n_filter=32, filter_size=(3, 3), strides=(2, 2), act="softplus", in_channels=32
63+
out_channels=32, kernel_size=(3, 3), strides=(2, 2), act="softplus", in_channels=32
6464
)
6565
self.n9 = self.conv2dlayer9(self.n8)
6666

6767
self.conv2dlayer10 = tlx.nn.Conv2d(
68-
n_filter=32, filter_size=(3, 3), strides=(2, 2), act="relu6", in_channels=32
68+
out_channels=32, kernel_size=(3, 3), strides=(2, 2), act="relu6", in_channels=32
6969
)
7070
self.n10 = self.conv2dlayer10(self.n9)
7171

tests/layers/test_layers_core_basedense_dropout.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -20,16 +20,16 @@ def setUpClass(self):
2020

2121
self.inputs_shape = [self.batch_size, 784]
2222
self.input = tlx.nn.Input(self.inputs_shape)
23-
self.dense1 = tlx.nn.Dense(n_units=800, act=tlx.ReLU, in_channels=784, name='test_dense')
23+
self.dense1 = tlx.nn.Linear(out_features=800, act=tlx.ReLU, in_features=784, name='test_dense')
2424
self.n1 = self.dense1(self.input)
2525

26-
self.dropout1 = tlx.nn.Dropout(keep=0.8)
26+
self.dropout1 = tlx.nn.Dropout(p=0.2)
2727
self.n2 = self.dropout1(self.n1)
2828

29-
self.dense2 = tlx.nn.Dense(n_units=10, act='relu', b_init=None, in_channels=800)
29+
self.dense2 = tlx.nn.Linear(out_features=10, act='relu', b_init=None, in_features=800)
3030
self.n3 = self.dense2(self.n2)
3131

32-
self.dense3 = tlx.nn.Dense(n_units=10, act='relu', b_init=None, in_channels=10)
32+
self.dense3 = tlx.nn.Linear(out_features=10, act='relu', b_init=None, in_features=10)
3333
self.n4 = self.dense3(self.n3)
3434

3535
self.concat = tlx.nn.Concat(concat_dim=-1)([self.n2, self.n3])
@@ -38,10 +38,10 @@ class get_model(tensorlayerx.nn.Module):
3838

3939
def __init__(self):
4040
super(get_model, self).__init__()
41-
self.layer1 = tlx.nn.Dense(n_units=800, act=tlx.ReLU, in_channels=784, name='test_dense')
42-
self.dp = tlx.nn.Dropout(keep=0.8)
43-
self.layer2 = tlx.nn.Dense(n_units=10, act='relu', b_init=None, in_channels=800)
44-
self.layer3 = tlx.nn.Dense(n_units=10, act='relu', b_init=None, in_channels=10)
41+
self.layer1 = tlx.nn.Linear(out_features=800, act=tlx.ReLU, in_features=784, name='test_dense')
42+
self.dp = tlx.nn.Dropout(p=0.2)
43+
self.layer2 = tlx.nn.Linear(out_features=10, act='relu', b_init=None, in_features=800)
44+
self.layer3 = tlx.nn.Linear(out_features=10, act='relu', b_init=None, in_features=10)
4545

4646
def forward(self, inputs):
4747
z = self.layer1(inputs)

tests/layers/test_layers_core_nested.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ class MyLayer(tensorlayerx.nn.Module):
2727

2828
def __init__(self, name=None):
2929
super(MyLayer, self).__init__(name=name)
30-
self.input_layer = tlx.nn.Dense(in_channels=50, n_units=20)
30+
self.input_layer = tlx.nn.Linear(in_features=50, out_features=20)
3131
self.build(None)
3232
self._built = True
3333

tests/layers/test_layers_deformable_convolution.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -21,17 +21,17 @@ def setUpClass(self):
2121
self.input_layer = tlx.nn.Input(self.inputs_shape, name='input_layer')
2222

2323
self.offset1 = tlx.nn.Conv2d(
24-
n_filter=18, filter_size=(3, 3), strides=(1, 1), padding='SAME', name='offset1'
24+
out_channels=18, kernel_size=(3, 3), strides=(1, 1), padding='SAME', name='offset1'
2525
)(self.input_layer)
2626
self.init_deformconv1 = tlx.nn.DeformableConv2d(
27-
offset_layer=self.offset1, n_filter=32, filter_size=(3, 3), act='relu', name='deformable1'
27+
offset_layer=self.offset1, out_channels=32, kernel_size=(3, 3), act='relu', name='deformable1'
2828
)
2929
self.deformconv1 = self.init_deformconv1(self.input_layer)
3030
self.offset2 = tlx.nn.Conv2d(
31-
n_filter=18, filter_size=(3, 3), strides=(1, 1), padding='SAME', name='offset2'
31+
out_channels=18, kernel_size=(3, 3), strides=(1, 1), padding='SAME', name='offset2'
3232
)(self.deformconv1)
3333
self.deformconv2 = tlx.nn.DeformableConv2d(
34-
offset_layer=self.offset2, n_filter=64, filter_size=(3, 3), act='relu', name='deformable2'
34+
offset_layer=self.offset2, out_channels=64, kernel_size=(3, 3), act='relu', name='deformable2'
3535
)(self.deformconv1)
3636

3737
@classmethod

tests/layers/test_layers_dense.py

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -20,9 +20,9 @@ def setUpClass(self):
2020
self.inputs_shape = [self.batch_size, 10]
2121

2222
self.ni = tlx.nn.Input(self.inputs_shape, name='input_layer')
23-
self.layer1 = tlx.nn.BinaryDense(n_units=5)
23+
self.layer1 = tlx.nn.BinaryDense(out_features=5)
2424

25-
self.layer2 = tlx.nn.BinaryDense(n_units=5, in_channels=10)
25+
self.layer2 = tlx.nn.BinaryDense(out_features=5, in_features=10)
2626

2727
self.n1 = self.layer1(self.ni)
2828
self.n2 = self.layer2(self.ni)
@@ -49,8 +49,8 @@ def setUpClass(self):
4949
self.inputs_shape = [self.batch_size, 10]
5050

5151
self.ni = tlx.nn.Input(self.inputs_shape, name='input_layer')
52-
self.layer1 = tlx.nn.DorefaDense(n_units=5)
53-
self.layer2 = tlx.nn.DorefaDense(n_units=5, in_channels=10)
52+
self.layer1 = tlx.nn.DorefaDense(out_features=5)
53+
self.layer2 = tlx.nn.DorefaDense(out_features=5, in_features=10)
5454

5555
self.n1 = self.layer1(self.ni)
5656
self.n2 = self.layer2(self.ni)
@@ -75,9 +75,9 @@ def setUpClass(self):
7575
self.inputs_shape = [self.batch_size, 10]
7676

7777
self.ni = tlx.nn.Input(self.inputs_shape, name='input_layer')
78-
self.layer1 = tlx.nn.DropconnectDense(n_units=5, keep=1.0)
78+
self.layer1 = tlx.nn.DropconnectDense(out_features=5, keep=1.0)
7979

80-
self.layer2 = tlx.nn.DropconnectDense(n_units=5, in_channels=10, keep=0.01)
80+
self.layer2 = tlx.nn.DropconnectDense(out_features=5, in_features=10, keep=0.01)
8181

8282
self.n1 = self.layer1(self.ni)
8383
self.n2 = self.layer2(self.ni)
@@ -102,9 +102,9 @@ def setUpClass(self):
102102
self.inputs_shape = [self.batch_size, 10]
103103

104104
self.ni = tlx.nn.Input(self.inputs_shape, name='input_layer')
105-
self.layer1 = tlx.nn.QuanDense(n_units=5)
105+
self.layer1 = tlx.nn.QuanDense(out_features=5)
106106

107-
self.layer2 = tlx.nn.QuanDense(n_units=5, in_channels=10)
107+
self.layer2 = tlx.nn.QuanDense(out_features=5, in_features=10)
108108

109109
self.n1 = self.layer1(self.ni)
110110
self.n2 = self.layer2(self.ni)
@@ -129,8 +129,8 @@ def setUpClass(self):
129129
self.inputs_shape = [self.batch_size, 10]
130130

131131
self.inputs = tensorlayerx.nn.initializers.TruncatedNormal()(shape=self.inputs_shape)
132-
self.layer1 = tlx.nn.QuanDenseWithBN(n_units=5)
133-
self.layer2 = tlx.nn.QuanDenseWithBN(n_units=5, in_channels=10)
132+
self.layer1 = tlx.nn.QuanDenseWithBN(out_features=5)
133+
self.layer2 = tlx.nn.QuanDenseWithBN(out_features=5, in_features=10)
134134

135135
self.n1 = self.layer1(self.inputs)
136136
self.n2 = self.layer2(self.inputs)
@@ -155,8 +155,8 @@ def setUpClass(self):
155155
self.inputs_shape = [self.batch_size, 10]
156156

157157
self.inputs = tlx.nn.Input(self.inputs_shape, name='input_layer')
158-
self.layer1 = tlx.nn.TernaryDense(n_units=5)
159-
self.layer2 = tlx.nn.TernaryDense(n_units=5, in_channels=10)
158+
self.layer1 = tlx.nn.TernaryDense(out_features=5)
159+
self.layer2 = tlx.nn.TernaryDense(out_features=5, in_features=10)
160160

161161
self.n1 = self.layer1(self.inputs)
162162
self.n2 = self.layer2(self.inputs)

tests/layers/test_layers_extend.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,6 @@
55
import unittest
66

77
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
8-
import tensorlayerx
98
import tensorlayerx as tlx
109

1110
from tests.utils import CustomTestCase

0 commit comments

Comments
 (0)